定向进化
蛋白质工程
羟基化
定向分子进化
工作流程
超家族
酶
组合化学
功能(生物学)
计算机科学
计算生物学
化学
生物化学
生化工程
突变体
生物
工程类
基因
遗传学
数据库
作者
Brianne R. King,Kiera H. Sumida,Jessica L. Caruso,David Baker,Jesse G. Zalatan
标识
DOI:10.1002/anie.202414705
摘要
Deep learning tools for enzyme design are rapidly emerging, and there is a critical need to evaluate their effectiveness in engineering workflows. Here we show that the deep learning-based tool ProteinMPNN can be used to redesign Fe(II)/αKG superfamily enzymes for greater stability, solubility, and expression while retaining both native activity and industrially relevant non-native functions. This superfamily has diverse catalytic functions and could provide a rich new source of biocatalysts for synthesis and industrial processes. Through systematic comparisons of directed evolution trajectories for a non-native, remote C(sp
科研通智能强力驱动
Strongly Powered by AbleSci AI