亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing Emergency Department Triage Prediction With Machine Learning to Optimize Triage for Abdominal Pain Surgery Patients

急诊分诊台 医学 急诊科 逻辑回归 接收机工作特性 腹痛 机器学习 梯度升压 随机森林 急诊医学 人工智能 外科 计算机科学 内科学 精神科
作者
Chen Chai,Shu-zhen Peng,Rui Zhang,Chengwei Li,Yan Zhao
出处
期刊:Surgical Innovation [SAGE]
标识
DOI:10.1177/15533506241273449
摘要

Background The development of emergency department (ED) triage systems remains challenging in accurately differentiating patients with acute abdominal pain (AAP) who are critical and urgent for surgery due to subjectivity and limitations. We use machine learning models to predict emergency surgical abdominal pain patients in triage, and then compare their performance with conventional Logistic regression models. Methods Using 38 214 patients presenting with acute abdominal pain at Zhongnan Hospital of Wuhan University between March 1, 2014, and March 1, 2022, we identified all adult patients (aged ≥18 years). We utilized routinely available triage data in electronic medical records as predictors, including structured data (eg, triage vital signs, gender, and age) and unstructured data (chief complaints and physical examinations in free-text format). The primary outcome measure was whether emergency surgery was performed. The dataset was randomly sampled, with 80% assigned to the training set and 20% to the test set. We developed 5 machine learning models: Light Gradient Boosting Machine (Light GBM), eXtreme Gradient Boosting (XGBoost), Deep Neural Network (DNN), and Random Forest (RF). Logistic regression (LR) served as the reference model. Model performance was calculated for each model, including the area under the receiver-work characteristic curve (AUC) and net benefit (decision curve), as well as the confusion matrix. Results Of all the 38 214 acute abdominal pain patients, 4208 underwent emergency abdominal surgery while 34 006 received non-surgical treatment. In the surgery outcome prediction, all 4 machine learning models outperformed the reference model (eg, AUC, 0.899 [95%CI 0.891-0.903] in the Light GBM vs. 0.885 [95%CI 0.876-0.891] in the reference model), Similarly, most machine learning models exhibited significant improvements in net reclassification compared to the reference model (eg, NRIs of 0.0812[95%CI, 0.055-0.1105] in the XGBoost), with the exception of the RF model. Decision curve analysis shows that across the entire range of thresholds, the net benefits of the XGBoost and the Light GBM models were higher than the reference model. In particular, the Light GBM model performed well in predicting the need for emergency abdominal surgery with higher sensitivity, specificity, and accuracy. Conclusions Machine learning models have demonstrated superior performance in predicting emergency abdominal pain surgery compared to traditional models. Modern machine learning improves clinical triage decisions and ensures that critically needy patients receive priority for emergency resources and timely, effective treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
聪明念真发布了新的文献求助10
9秒前
lim完成签到 ,获得积分10
14秒前
14秒前
香蕉觅云应助三金采纳,获得10
16秒前
聪明念真完成签到,获得积分20
19秒前
深情安青应助三金采纳,获得10
43秒前
顺心剑身完成签到 ,获得积分10
1分钟前
打打应助mochi采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
mochi发布了新的文献求助10
1分钟前
plucky发布了新的文献求助20
1分钟前
巨型肥猫发布了新的文献求助10
1分钟前
CodeCraft应助三金采纳,获得10
1分钟前
1分钟前
shenqy发布了新的文献求助10
1分钟前
amit_弢完成签到,获得积分20
1分钟前
科研通AI5应助123456采纳,获得10
1分钟前
2分钟前
微弱de胖头完成签到,获得积分20
2分钟前
Ava应助巨型肥猫采纳,获得10
2分钟前
123456完成签到,获得积分10
2分钟前
muum完成签到,获得积分10
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
2分钟前
甄茗完成签到 ,获得积分10
2分钟前
灭灭羊发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
morena应助科研通管家采纳,获得20
2分钟前
2分钟前
sarmad完成签到,获得积分10
2分钟前
调研昵称发布了新的文献求助10
2分钟前
plucky完成签到 ,获得积分20
2分钟前
frap完成签到,获得积分0
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073433
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156