Unsupervised Dual Deep Hashing with Semantic-Index and Content-Code for Cross-Modal Retrieval

计算机科学 散列函数 人工智能 情态动词 索引(排版) 对偶(语法数字) 情报检索 编码(集合论) 内容(测量理论) 自然语言处理 模式识别(心理学) 数学 艺术 集合(抽象数据类型) 化学 高分子化学 程序设计语言 万维网 数学分析 文学类 计算机安全
作者
Bin Zhang,Yue Zhang,Junyu Li,Jiazhou Chen,Tatsuya Akutsu,Yiu‐ming Cheung,Hongmin Cai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (1): 387-399
标识
DOI:10.1109/tpami.2024.3467130
摘要

Hashing technology has exhibited great cross-modal retrieval potential due to its appealing retrieval efficiency and storage effectiveness. Most current supervised cross-modal retrieval methods heavily rely on accurate semantic supervision, which is intractable for annotations with ever-growing sample sizes. By comparison, the existing unsupervised methods rely on accurate sample similarity preservation strategies with intensive computational costs to compensate for the lack of semantic guidance, which causes these methods to lose the power to bridge the semantic gap. Furthermore, both kinds of approaches need to search for the nearest samples among all samples in a large search space, whose process is laborious. To address these issues, this paper proposes an unsupervised dual deep hashing (UDDH) method with semantic-index and content-code for cross-modal retrieval. Deep hashing networks are utilized to extract deep features and jointly encode the dual hashing codes in a collaborative manner with a common semantic index and modality content codes to simultaneously bridge the semantic and heterogeneous gaps for cross-modal retrieval. The dual deep hashing architecture, comprising the head code on semantic index and tail codes on modality content, enhances the efficiency for cross-modal retrieval. A query sample only needs to search for the retrieved samples with the same semantic index, thus greatly shrinking the search space and achieving superior retrieval efficiency. UDDH integrates the learning processes of deep feature extraction, binary optimization, common semantic index, and modality content code within a unified model, allowing for collaborative optimization to enhance the overall performance. Extensive experiments are conducted to demonstrate the retrieval superiority of the proposed approach over the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助仙林AK47采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
科目三应助科研通管家采纳,获得10
1秒前
午见千山应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
2秒前
小二郎应助值得采纳,获得10
4秒前
单纯代萱发布了新的文献求助10
4秒前
5秒前
ming完成签到,获得积分10
6秒前
科研通AI2S应助李李采纳,获得10
6秒前
6秒前
adhdff发布了新的文献求助10
7秒前
求求接收吧应助后来采纳,获得20
8秒前
8秒前
赘婿应助郭倩采纳,获得10
9秒前
Lucy小影完成签到,获得积分10
10秒前
粗心的蒙蒙完成签到,获得积分10
10秒前
笨笨完成签到,获得积分10
11秒前
11秒前
12秒前
顾矜应助ze采纳,获得10
13秒前
KongLG发布了新的文献求助10
14秒前
陀思妥耶夫斯基完成签到 ,获得积分10
15秒前
专注寻菱完成签到,获得积分10
15秒前
单纯代萱完成签到,获得积分10
16秒前
17秒前
wyx1111完成签到,获得积分10
17秒前
可爱的函函应助123采纳,获得10
19秒前
XIAXIAXIA发布了新的文献求助10
20秒前
打击你扫i完成签到,获得积分10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228806
求助须知:如何正确求助?哪些是违规求助? 2876566
关于积分的说明 8195759
捐赠科研通 2543848
什么是DOI,文献DOI怎么找? 1374072
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621509