MISNeR: Medical Implicit Shape Neural Representation for Image Volume Visualisation

计算机科学 代表(政治) 可视化 图像(数学) 人工智能 计算机图形学(图像) 信息可视化 体积热力学 计算机视觉 物理 量子力学 政治 政治学 法学
作者
Guofan Jin,Yong Sik Jung,Lu Bi,Jeesun Kim
出处
期刊:Computer Graphics Forum [Wiley]
卷期号:43 (7)
标识
DOI:10.1111/cgf.15222
摘要

Abstract Three‐dimensional visualisation of mesh reconstruction of the medical images is commonly used for various clinical applications including pre / post‐surgical planning. Such meshes are conventionally generated by extracting the surface from volumetric segmentation masks. Therefore, they have inherent limitations of staircase artefacts due to their anisotropic voxel dimensions. The time‐consuming process for manual refinement to remove artefacts and/or the isolated regions further adds to these limitations. Methods for directly generating meshes from volumetric data by template deformation are often limited to simple topological structures, and methods that use implicit functions for continuous surfaces, do not achieve the level of mesh reconstruction accuracy when compared to segmentation‐based methods. In this study, we address these limitations by combining the implicit function representation with a multi‐level deep learning architecture. We introduce a novel multi‐level local feature sampling component which leverages the spatial features for the implicit function regression to enhance the segmentation result. We further introduce a shape boundary estimator that accelerates the explicit mesh reconstruction by minimising the number of the signed distance queries during model inference. The result is a multi‐level deep learning network that directly regresses the implicit function from medical image volumes to a continuous surface model, which can be used for mesh reconstruction from arbitrary high volume resolution to minimise staircase artefacts. We evaluated our method using pelvic computed tomography (CT) dataset from two public sources with varying z‐axis resolutions. We show that our method minimised the staircase artefacts while achieving comparable results in surface accuracy when compared to the state‐of‐the‐art segmentation algorithms. Furthermore, our method was 9 times faster in volume reconstruction than comparable implicit shape representation networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助兔兔采纳,获得10
刚刚
燕燕完成签到 ,获得积分10
刚刚
3237847485关注了科研通微信公众号
1秒前
Hello应助自信白凡采纳,获得10
2秒前
严西发布了新的文献求助10
2秒前
devin22222发布了新的文献求助10
2秒前
借一颗糖完成签到,获得积分10
3秒前
5秒前
柑橘完成签到,获得积分10
6秒前
7秒前
浮游呦呦完成签到,获得积分10
8秒前
cora发布了新的文献求助10
8秒前
10秒前
Fishball完成签到,获得积分20
10秒前
jiajin发布了新的文献求助10
12秒前
无私念瑶发布了新的文献求助10
15秒前
devin22222完成签到,获得积分10
16秒前
甜甜的难敌完成签到 ,获得积分20
16秒前
可爱的函函应助xwwwww采纳,获得10
17秒前
烟花应助落晨采纳,获得10
18秒前
18秒前
大意的雨双完成签到 ,获得积分10
19秒前
传奇3应助cora采纳,获得10
20秒前
22秒前
今后应助无私念瑶采纳,获得10
22秒前
斯文败类应助严西采纳,获得10
24秒前
搜集达人应助S杨采纳,获得10
24秒前
wanghuihui发布了新的文献求助10
25秒前
慢慢发布了新的文献求助10
27秒前
小马甲应助Fjun采纳,获得30
27秒前
27秒前
cora完成签到,获得积分10
28秒前
29秒前
30秒前
xeonnn完成签到,获得积分20
31秒前
romio发布了新的文献求助10
31秒前
大个应助皮皮虾采纳,获得10
31秒前
12彡完成签到 ,获得积分10
32秒前
32秒前
xwwwww发布了新的文献求助10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299776
求助须知:如何正确求助?哪些是违规求助? 2934644
关于积分的说明 8470036
捐赠科研通 2608208
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574