碳纳米管
红外线的
材料科学
纳米技术
还原(数学)
碳纤维
化学工程
光电子学
光学
复合材料
复合数
物理
几何学
数学
工程类
作者
Suchan Song,Cuncun Xin,Wei Liu,Wenzhe Shang,Tianna Liu,Wentao Peng,Jungang Hou,Yantao Shi
标识
DOI:10.1002/ange.202415173
摘要
Carbon nanotubes feature one‐dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup‐stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge‐plane sites. The localized pz electronic states and accessible intersubband plasmon excitations in the near‐infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo‐induced force microscopy (PiFM) and transient photocurrent response. The hybrid comprising intimately integrated CSCNTs‐C3N4 effectively sustains interfacial electronic states and underlies the energy extraction out of plasmonic components. The CNN demonstrates almost near‐unity NIR light‐driven CO2 reduction to CO with a rate of 1.35 µmol g–1 h–1. This work sheds light on the exploitation of metal‐free carbon‐based plasmonic nanostructures for photocatalytic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI