Predictive slope stability early warning model based on CatBoost

预警系统 计算机科学 理论(学习稳定性) 机器学习 电信
作者
Yuanli Cai,Ying Yuan,Aihong Zhou
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-77058-6
摘要

A model for predicting slope stability is developed using Categorical Boosting (CatBoost), which incorporates 6 slope features to characterize the state of slope stability. The model is trained using a symmetric tree as the base model, utilizing ordered boosting to replace gradient estimation, which enhances prediction accuracy. Comparative models including Support Vector Machine (SVM), Light Gradient Boosting Machine (LGBM), Random Forest (RF), and Logistic Regression (LR) were introduced. Five performance evaluation metrics are utilized to assess the predictive capabilities of the CatBoost model. Based on CatBoost model, the predicted probability of slope instability is calculated, and the early warning model of slope instability is further established. The results suggest that the CatBoost model demonstrates a 6.25% disparity in accuracy between the training and testing sets, achieving a precision of 100% and an Area Under Curve (AUC) value of 0.95. This indicates a high level of predictive accuracy and robust ordering capabilities, effectively mitigating the problem of overfitting. The slope instability warning model offers reasonable classifications for warning levels, providing valuable insights for both research and practical applications in the prediction of slope stability and instability warning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助业余专家采纳,获得10
2秒前
2秒前
无花果应助翔翔超人采纳,获得10
3秒前
4秒前
cocolu应助失眠觅云采纳,获得10
4秒前
所所应助失眠觅云采纳,获得10
4秒前
4秒前
4秒前
英姑应助生动的不尤采纳,获得10
4秒前
5秒前
心落失发布了新的文献求助10
6秒前
jiujiu关注了科研通微信公众号
8秒前
夏炖鱿鱼发布了新的文献求助20
8秒前
9秒前
9秒前
拼搏海云完成签到,获得积分10
10秒前
驿寄梅花发布了新的文献求助10
10秒前
yuyu完成签到,获得积分10
10秒前
内含子完成签到,获得积分10
11秒前
11秒前
可爱的函函应助hwq采纳,获得10
12秒前
12秒前
13秒前
壮观雅柏完成签到,获得积分10
13秒前
搜集达人应助jianning采纳,获得10
13秒前
忧郁凌波发布了新的文献求助10
14秒前
小玲子发布了新的文献求助10
14秒前
又又完成签到,获得积分10
14秒前
萨尔莫斯完成签到,获得积分10
15秒前
翔翔超人发布了新的文献求助10
16秒前
萨尔莫斯发布了新的文献求助10
18秒前
Jasper应助zyy采纳,获得10
20秒前
双黄应助ldj6670采纳,获得10
21秒前
在水一方应助驿寄梅花采纳,获得10
21秒前
晗月完成签到,获得积分10
22秒前
Dr_Stars完成签到,获得积分10
24秒前
默默的雁菡完成签到,获得积分10
25秒前
27秒前
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304