Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases

失调 肠道菌群 表观遗传学 生物 炎症 氧化应激 代谢综合征 免疫学 内分泌学 遗传学 糖尿病 基因
作者
Hamid M. Abdolmaleky,Jin‐Rong Zhou
出处
期刊:Antioxidants [MDPI AG]
卷期号:13 (8): 985-985 被引量:2
标识
DOI:10.3390/antiox13080985
摘要

Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超文献发布了新的文献求助10
刚刚
科研小白发布了新的文献求助10
2秒前
tuanheqi应助chillin采纳,获得100
2秒前
2秒前
仔拉完成签到,获得积分10
4秒前
5秒前
顾矜应助负责的寒梅采纳,获得30
5秒前
7秒前
mm完成签到 ,获得积分10
7秒前
8秒前
李李发布了新的文献求助10
10秒前
科研通AI2S应助超文献采纳,获得10
11秒前
11秒前
daladala发布了新的文献求助10
12秒前
琳琳发布了新的文献求助10
13秒前
小朱完成签到 ,获得积分10
14秒前
努力的小狗屁完成签到 ,获得积分10
15秒前
lilili发布了新的文献求助10
16秒前
17秒前
Minerva发布了新的文献求助10
17秒前
科研小白完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
EVAN完成签到,获得积分10
19秒前
隐形曼青应助自由的水卉采纳,获得10
20秒前
陶军辉发布了新的文献求助10
22秒前
anhong99999发布了新的文献求助10
23秒前
健康的妙松关注了科研通微信公众号
24秒前
耳东发布了新的文献求助10
25秒前
XuanZhang完成签到,获得积分10
25秒前
26秒前
雪山飞龙发布了新的文献求助10
27秒前
28秒前
29秒前
lacan发布了新的文献求助10
30秒前
科目三应助Minerva采纳,获得10
30秒前
想要发文章完成签到,获得积分10
31秒前
LiLi完成签到,获得积分10
31秒前
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023