电解质
材料科学
法拉第效率
化学工程
溶剂化
锂(药物)
电化学
乙腈
过电位
阳极
稀释剂
阴极
无机化学
溶剂
电极
有机化学
化学
物理化学
医学
工程类
内分泌学
作者
Menghao Li,Yue Liu,Xuming Yang,Qing Zhang,Yifeng Cheng,Li Deng,Qiwei Zhou,Tao Cheng,Meng Gu
标识
DOI:10.1002/adma.202404271
摘要
Abstract Acetonitrile (AN) is a compelling electrolyte solvent for high‐voltage and fast‐charging batteries, but its reductive instability makes it incompatible with lithium metal anodes (LMAs). Herein, 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether (TTE) is used as the diluent to build an AN‐based local high‐concentration electrolyte (LHCE) to realize dense, dendrite‐free, and stable LMAs. Such LHCE exhibits an exceptional electrochemical stability window close to 6 V (vs Li + /Li), excellent wettability, and promising flame retardancy. Compared to a baseline carbonate‐based electrolyte, its electrochemical performance is prominent: the overpotential of lithium nucleation is minimal (only 24 mV), the average half‐cell coulombic efficiency (CE) reaches 99.5% at 0.5 mA cm −2 , and its practicality in full cells with LiFePO 4 (LFP) and LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathodes is also demonstrated. Compounding factors are identified to decipher the superiority of the AN‐based LHCE. From the respect of solvation structures, both the elimination of free AN molecule and the diluent separation would contribute to prevention of anodic AN decomposition. Based on cryogenic electron microscopy (Cryo‐EM) characterization and theoretical simulations results, the produced solid‐electrolyte interphase (SEI) layer is uniform and compact. Thus, this work demonstrates a successful application of AN‐based electrolytes in LMAs—traditionally deemed impractical—via the combined regulation of solvation and SEI structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI