ProFun-SOM: Protein Function Prediction for Specific Ontology Based on Multiple Sequence Alignment Reconstruction

序列(生物学) 计算机科学 功能(生物学) 计算生物学 本体论 人工智能 数据挖掘 生物 遗传学 哲学 认识论
作者
JiangYi Shao,Junjie Chen,Bin Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3419250
摘要

Protein function prediction is crucial for understanding species evolution, including viral mutations. Gene ontology (GO) is a standardized representation framework for describing protein functions with annotated terms. Each ontology is a specific functional category containing multiple child ontologies, and the relationships of parent and child ontologies create a directed acyclic graph. Protein functions are categorized using GO, which divides them into three main groups: cellular component ontology, molecular function ontology, and biological process ontology. Therefore, the GO annotation of protein is a hierarchical multilabel classification problem. This hierarchical relationship introduces complexities such as mixed ontology problem, leading to performance bottlenecks in existing computational methods due to label dependency and data sparsity. To overcome bottleneck issues brought by mixed ontology problem, we propose ProFun-SOM, an innovative multilabel classifier that utilizes multiple sequence alignments (MSAs) to accurately annotate gene ontologies. ProFun-SOM enhances the initial MSAs through a reconstruction process and integrates them into a deep learning architecture. It then predicts annotations within the cellular component, molecular function, biological process, and mixed ontologies. Our evaluation results on three datasets (CAFA3, SwissProt, and NetGO2) demonstrate that ProFun-SOM surpasses state-of-the-art methods. This study confirmed that utilizing MSAs of proteins can effectively overcome the two main bottlenecks issues, label dependency and data sparsity, thereby alleviating the root problem, mixed ontology. A freely accessible web server is available at http://bliulab.net/ ProFun-SOM/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助斯文的傲珊采纳,获得10
刚刚
1秒前
完美的翼完成签到 ,获得积分10
2秒前
2秒前
BEN发布了新的文献求助10
3秒前
好困应助无私尔云采纳,获得20
3秒前
野猪发布了新的文献求助10
4秒前
7秒前
8秒前
谢x07完成签到,获得积分10
8秒前
zhf关闭了zhf文献求助
9秒前
孙亦沈发布了新的文献求助10
9秒前
10秒前
10秒前
WangSiya完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
脚啊啊啊发布了新的文献求助10
16秒前
16秒前
胖橘梨花逻辑猫完成签到 ,获得积分10
17秒前
从容道罡发布了新的文献求助30
17秒前
孙亦沈完成签到,获得积分10
17秒前
小冯发布了新的文献求助50
17秒前
今后应助宇宇宇采纳,获得10
18秒前
万崽秋秋糖完成签到 ,获得积分10
19秒前
互助遵法尚德应助小冯采纳,获得10
21秒前
Jasper应助小冯采纳,获得10
21秒前
Cassie应助小冯采纳,获得10
21秒前
浅尝离白应助小冯采纳,获得30
21秒前
21秒前
nnnnn发布了新的文献求助10
21秒前
伏波完成签到,获得积分10
21秒前
ZYH完成签到,获得积分10
21秒前
脚啊啊啊完成签到,获得积分10
23秒前
Hello应助谨慎的雨琴采纳,获得10
26秒前
科研通AI2S应助cxh采纳,获得10
27秒前
28秒前
Chen272发布了新的文献求助10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449