序列(生物学)
计算机科学
功能(生物学)
计算生物学
本体论
人工智能
数据挖掘
生物
遗传学
哲学
认识论
作者
JiangYi Shao,Junjie Chen,Bin Liu
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-12
标识
DOI:10.1109/tnnls.2024.3419250
摘要
Protein function prediction is crucial for understanding species evolution, including viral mutations. Gene ontology (GO) is a standardized representation framework for describing protein functions with annotated terms. Each ontology is a specific functional category containing multiple child ontologies, and the relationships of parent and child ontologies create a directed acyclic graph. Protein functions are categorized using GO, which divides them into three main groups: cellular component ontology, molecular function ontology, and biological process ontology. Therefore, the GO annotation of protein is a hierarchical multilabel classification problem. This hierarchical relationship introduces complexities such as mixed ontology problem, leading to performance bottlenecks in existing computational methods due to label dependency and data sparsity. To overcome bottleneck issues brought by mixed ontology problem, we propose ProFun-SOM, an innovative multilabel classifier that utilizes multiple sequence alignments (MSAs) to accurately annotate gene ontologies. ProFun-SOM enhances the initial MSAs through a reconstruction process and integrates them into a deep learning architecture. It then predicts annotations within the cellular component, molecular function, biological process, and mixed ontologies. Our evaluation results on three datasets (CAFA3, SwissProt, and NetGO2) demonstrate that ProFun-SOM surpasses state-of-the-art methods. This study confirmed that utilizing MSAs of proteins can effectively overcome the two main bottlenecks issues, label dependency and data sparsity, thereby alleviating the root problem, mixed ontology. A freely accessible web server is available at http://bliulab.net/ ProFun-SOM/.
科研通智能强力驱动
Strongly Powered by AbleSci AI