Engineering single-atom catalysts as multifunctional polysulfide and lithium regulators toward kinetically accelerated and durable lithium-sulfur batteries

多硫化物 催化作用 电催化剂 硫黄 化学 氧化还原 电化学动力学 材料科学 纳米技术 有机化学 化学工程 物理化学 工程类 电化学 电解质 冶金 电极
作者
Donghua Wang,Wei Wang,Jiamao Hao,Wenyuan Zhang,Haofeng Shi,Chengdeng Wang,Zhihao Xiong,Zhiming Bai,Fu‐Rong Chen,Junjie Guo,Bingshe Xu,Xiaoqin Yan,Yousong Gu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:466: 143182-143182 被引量:18
标识
DOI:10.1016/j.cej.2023.143182
摘要

Developing electrocatalyst to ameliorate the shuttling effect of lithium polysulfides (LiPSs), sluggish sulfur redox reaction kinetics and the rampant dendrite growth is of paramount importance for lithium-sulfur (Li-S) batteries. Yet still, the utilization of the most mainstream traditional metal electrocatalytic nanoparticles is far below expectation. Herein, we engineer an exclusive single-atom catalyst with planar Co-N4 coupling of nitrogen-doped graphene mesh (SA-Co/NGM) to achieve exceptional atom utilization efficiency for catalytic conversion of LiPSs. High surface area and ultra-thin two-dimensional texture can not only accommodate high concentration monodispersed lithiophilic atomic Co sites, but also guarantee homogenize high-flux Li ion transport, alleviating the formation of Li-dendrites. Critically, the maximized exposure of Co-N4 as a regulator in sulfur electrochemistry can conspicuously suppress the shuttle effect and accelerate bidirectional sulfur redox kinetics via electron delocalization, as demonstrated by a judicious combination of electro-kinetic analysis, in situ spectroscopy and density functional theory (DFT) computations. As expected, the batteries based on a SA-Co/NGM modified separator achieve an ultrahigh rate capability, exceptionally long cycle life and a distinguished favorable areal capacity under high sulfur loading. This work provides a rational design of single-atom catalysts for kinetics-boosted electrocatalysis towards long-lasting Li-S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Tina采纳,获得10
刚刚
旧人驳回了Akim应助
2秒前
2秒前
Owen应助听听采纳,获得10
2秒前
蛋白完成签到,获得积分10
3秒前
4秒前
Yziii应助Liuyicong采纳,获得20
5秒前
万能图书馆应助newRamir采纳,获得10
5秒前
meina发布了新的文献求助10
5秒前
JamesPei应助guo采纳,获得10
5秒前
脑洞疼应助潦草采纳,获得10
5秒前
YW完成签到,获得积分10
6秒前
FashionBoy应助欣慰的寒烟采纳,获得10
6秒前
6秒前
hzw发布了新的文献求助10
7秒前
Hello应助爱太阳的阿喵采纳,获得10
7秒前
7秒前
充电宝应助mjn404采纳,获得10
8秒前
王科研完成签到,获得积分10
9秒前
你好发布了新的文献求助10
9秒前
lemon完成签到,获得积分10
9秒前
nhhdhhn发布了新的文献求助10
9秒前
9秒前
汉堡包应助科学家采纳,获得10
10秒前
kekeke完成签到,获得积分10
10秒前
大模型应助我门牙有缝采纳,获得10
11秒前
傲娇的海冬关注了科研通微信公众号
11秒前
11秒前
YW发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
秉烛游发布了新的文献求助10
15秒前
基金中中中完成签到,获得积分10
15秒前
糊涂的大象完成签到,获得积分20
15秒前
16秒前
义气笑容完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239