摘要
Chapter 16 Fungal Mycelia as Bioadhesives Wenjing Sun, Wenjing Sun School of Forest Resources, University of Maine, Orono, ME, USASearch for more papers by this authorMehdi Tajvidi, Mehdi Tajvidi School of Forest Resources, University of Maine, Orono, ME, USASearch for more papers by this authorChristopher G. Hunt, Christopher G. Hunt Forest Products Laboratory, Madison, WI, USASearch for more papers by this author Wenjing Sun, Wenjing Sun School of Forest Resources, University of Maine, Orono, ME, USASearch for more papers by this authorMehdi Tajvidi, Mehdi Tajvidi School of Forest Resources, University of Maine, Orono, ME, USASearch for more papers by this authorChristopher G. Hunt, Christopher G. Hunt Forest Products Laboratory, Madison, WI, USASearch for more papers by this author Book Editor(s):Manfred Dunky, Manfred DunkySearch for more papers by this authorK.L. Mittal, K.L. MittalSearch for more papers by this author First published: 26 April 2023 https://doi.org/10.1002/9781394175406.ch16 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Mycelium-bonded bio-composites are an emerging class of novel materials developed over the past ten years. These have attracted significant research and commercialization interest with a steadily increasing number of papers, patents, and products. The basic idea behind these novel composites is to use fungal mycelia to bond substrates, mostly lignocellulosic biomass, together. Therefore, fungal mycelia in the system actually work as adhesives. This kind of adhesive is different from traditionally recognized resin-based adhesives in characteristics, processing, application field, and evaluation criteria. Adhesive performance evaluation depends on the form of the final product. Data on the performance of fungal mycelia adhesives is limited and inconsistent and requires more fundamental research and analysis. It appears that usual technical specifications will be achieved preferably by low-density products such as for packaging and insulation. Achieving all the required properties of standard panels, such as M2 grade particleboards, remains elusive. References M.J. Carlile , The success of the hypha and mycelium , in: The Growing Fungus , N.A.R. Gow and G.M. Gadd (Eds.), pp. 3 – 19 , Springer , Dordrecht ( 1995 ). 10.1007/978-0-585-27576-5_1 Google Scholar R.R. Lew , How does a hypha grow? The biophysics of pressurized growth in fungi , Nature Rev. Microbiol. 9 , 509 – 518 ( 2011 ). 10.1038/nrmicro2591 CASPubMedWeb of Science®Google Scholar K. Cerimi , K.C. Akkaya , C. Pohl , B. Schmidt and P. Neubauer , Fungi as source for new Biobased materials: A patent review , Fungal Biol. Biotechnol . 6 , 17 ( 2019 ). PubMedGoogle Scholar H.A.B. Wösten , Filamentous fungi for the production of enzymes, chemicals and materials , Curr. Opin. Biotechnol. 59 , 65 - 70 ( 2019 ). 10.1016/j.copbio.2019.02.010 PubMedWeb of Science®Google Scholar A.J. Kinloch , Adhesion and Adhesives , Springer , Dordrecht ( 1987 ). 10.1007/978-94-015-7764-9 Google Scholar G.A. Holt , G. McIntyre , D. Flagg , E. Bayer , J.D. Wanjura and M.G. Pelletier , Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts , J. Biobased Mater. Bioenergy 6 , 431 – 439 ( 2012 ). 10.1166/jbmb.2012.1241 CASWeb of Science®Google Scholar J.A. López Nava , J. Méndez González , X. Ruelas Chacón and J.A. Nájera Luna , Assessment of edible fungi and films Biobased material simulating expanded polystyrene , Mater. Manuf. Processes 31 , 1085 – 1090 ( 2016 ). 10.1080/10426914.2015.1070420 CASWeb of Science®Google Scholar R. Liu , L. Long , Y. Sheng , J. Xu , H. Qiu , X. Li , Y. Wang and H. Wu , Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties , Ind. Crops Prod. 141 , 111732 ( 2019 ). 10.1016/j.indcrop.2019.111732 CASWeb of Science®Google Scholar W. Sun , M. Tajvidi , C.G. Hunt , G. McIntyre and D.J. Gardner , Fully Biobased hybrid composites made of wood, fungal mycelium and cellulose nanofibrils , Sci. Reports 9 , 1 – 12 ( 2019 ). 10.1038/s41598-018-37186-2 PubMedWeb of Science®Google Scholar R.M. McBee , M. Lucht , N. Mukhitov , M. Richardson , T. Srinivasan , D. Meng , H. Chen , A. Kaufman , M. Reitman , C. Munck , D. Schaak , C. Voigt and H.H. Wang , Engineering living and regenerative fungal–bacterial biocomposite structures , Nature Mater . https://doi.org/10.1038/s41563-021-01123-y ( 2021 ). 10.1038/s41563?021?01123?y Google Scholar A.C.S. Lim and M.R. Thomsen , Multi-material fabrication for biodegradable structures-enabling the printing of porous mycelium composite structures , in: Towards a New, Configurable Architecture . Proceedings of the 39th eCAADe Conference, V. Stojakovic and B. Tepavcevic (Eds.), pp. 85 – 94 , Novi Sad, Serbia ( 2021 ). Google Scholar D.L. Hawksworth and R. Lücking , Fungal diversity revisited: 2.2 to 3.8 Million species , Microbiol. Spectrum 5 , https://doi.org/10.1128/microbiolspec.FUNK-0052-2016 ( 2017 ). 10.1128/microbiolspec.FUNK?0052?2016 PubMedWeb of Science®Google Scholar C. Sanchez , Lignocellulosic residues: Biodegradation and bioconversion by fungi , Biotechnol. Adv. 27 , 185 – 194 ( 2009 ). 10.1016/j.biotechadv.2008.11.001 CASPubMedWeb of Science®Google Scholar J.C. Sigoillot , J.G. Berrin , M. Bey , L. Lesage-Meessen , A. Levasseur , A. Lomascolo , E. Record and E. Uzan-Boukhris , Fungal strategies for lignin degradation . Advances Bot. Res. 61 , 263 – 308 ( 2012 ). 10.1016/B978-0-12-416023-1.00008-2 CASWeb of Science®Google Scholar R.A. Zabel and J.J. Morrell , Changes in the strength and physical properties of wood caused by decay fungi , in: Wood Microbiology , R.A. Zabel and J.J. Morrell (Eds.), pp. 271 – 291 , Academic Press , San Diego ( 2020 ). 10.1016/B978-0-12-819465-2.00010-3 Google Scholar W.W. Wilcox , Review of literature on the effects of early stages of decay on wood strength , Wood Fiber Sci. 9 , 252 – 257 ( 1978 ). Web of Science®Google Scholar T. Watanabe , Y. Ohashi , T. Tanabe , Y. Honda and K. Messner , Lignin biodegradation by selective white rot fungus and its potential use in wood biomass conversion , in: Materials, Chemicals, and Energy from Forest Biomass , D.S. Argyropoulos (Ed.), pp. 409 – 421 , American Chemical Society , Washington DC ( 2007 ). 10.1021/bk-2007-0954.ch026 Google Scholar K. Fackler , C. Gradinger , M. Schmutzer , C. Tavzes , I. Burgert , M. Schwanninger , B. Hinterstoisser , T. Watanabe and K. Messner , Biotechnological wood modification with selective white-rot fungi and its molecular mechanisms , Food Technol. Biotechnol. 45 , 269 – 276 ( 2007 ). CASWeb of Science®Google Scholar X. Zhang , H. Yu , H. Huang and Y. Liu , Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms , Int. Biodeterior. Biodegrad. 60 , 159 – 164 ( 2007 ). 10.1016/j.ibiod.2007.02.003 CASWeb of Science®Google Scholar C. Wan and Y. Li , Fungal pretreatment of lignocellulosic biomass , Biotechnol. Adv. 30 , 1447 – 1457 ( 2012 ). 10.1016/j.biotechadv.2012.03.003 CASPubMedWeb of Science®Google Scholar N.A.R. Gow , J.P. Latge and C.A. Munro , The fungal cell wall: Structure, biosynthesis, and function , Microbiol Spectrum 5 , https://doi.org/10.1128/microbiolspec.FUNK-0035-2016 ( 2017 ). 10.1128/microbiolspec.FUNK?0035?2016 PubMedWeb of Science®Google Scholar R. Velagapudi , Extracellular matrix proteins in growth and fruiting body development of straw and wood degrading basidiomycetes , Ph.D. thesis, Georg-August-University of Göttingen , Göttingen, Germany ( 2006 ). Google Scholar C.G. Mendoza , Cell-wall structure and protoplast reversion in basidiomycetes , World J. Microbiol. Biotechnol. 8 , 36 – 38 ( 1992 ). 10.1007/BF02421486 PubMedWeb of Science®Google Scholar S. Lekounougou , S. Mounguengui , S. Dumarçay , C. Rose , P.E. Courty , J. Garbaye , P. Gérardin , J.P. Jacquot and E. Gelhaye , Initial stages of Fagus sylvatica wood colonization by the white-rot basidiomycete Trametes versicolor : Enzymatic characterization , Int. Biodeterior. Biodegrad. 61 , 287 – 293 ( 2008 ). 10.1016/j.ibiod.2007.06.013 CASWeb of Science®Google Scholar J. Wu , X. Zhang , J. Liu , M. Xiong , X. Lu , H. Fan , X. Wang and X. Zhang , Medium density fibreboard production by hot pressing without adhesive using Triarrhena sacchariflora residue bio-pretreated by white-rot fungus Coriolus versicolor , J. Appl. Microbiol. 121 , 415 – 421 ( 2016 ). 10.1111/jam.13148 CASPubMedWeb of Science®Google Scholar F.V.W. Appels , J. Dijksterhuis , C.E. Lukasiewicz , K.M.B. Jansen , H.A.B. Wösten and P. Krijgsheld , Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material , Sci. Reports 8 , 4703 ( 2018 ). 10.1038/s41598-018-23171-2 PubMedWeb of Science®Google Scholar D. Sammer , K. Krause , M. Gube , K. Wagner and E. Kothe , Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum , PLoS One 11 , e0167773 ( 2016 ). 10.1371/journal.pone.0167773 PubMedWeb of Science®Google Scholar M. Haneef , L. Ceseracciu , C. Canale , I.S. Bayer , J.A. Heredia-Guerrero and A. Athanassiou , Advanced materials from fungal mycelium: Fabrication and tuning of physical properties , Sci. Reports 7 , 41292 ( 2017 ). 10.1038/srep41292 CASPubMedWeb of Science®Google Scholar M.E. Antinori , L. Ceseracciu , G. Mancini , J.A. Heredia-Guerrero and A. Athanassiou , Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials , ACS Appl. Bio Mater. 3 , 1044 – 1051 ( 2020 ). 10.1021/acsabm.9b01031 CASPubMedGoogle Scholar W. Sun , M. Tajvidi , C. Howell and C.G. Hunt , Functionality of surface mycelium interfaces in wood bonding , ACS Appl Mater Interfaces 12 , 57431 – 57440 ( 2020 ). 10.1021/acsami.0c18165 CASPubMedWeb of Science®Google Scholar W. Sun , Understanding the adhesion mechanism in mycelium-assisted wood bonding , Ph.D. thesis, University of Maine , Orono, ME ( 2021 ). Google Scholar M. Jones , A. Mautner , S. Luenco , A. Bismarck and S. John , Engineered mycelium composite construction materials from fungal biorefineries: A critical review , Mater. Design 187 , 108397 ( 2020 ). 10.1016/j.matdes.2019.108397 CASWeb of Science®Google Scholar B. Goodell , J.E. Winandy and J.J. Morrell , Fungal degradation of wood: Emerging data, new insights and changing perceptions , Coatings 10 , 1210 ( 2020 ). 10.3390/coatings10121210 CASWeb of Science®Google Scholar P. Singh , O. Sulaiman , R. Hashim , P.F. Rupani and L.C. Peng , Biopulping of lignocellulosic material using different fungal species: A review , Rev. Environ. Sci. Biotechnol. 9 , 141 – 151 ( 2010 ). 10.1007/s11157-010-9200-0 CASPubMedWeb of Science®Google Scholar A. Ferraz , A. Guerra , R. Mendonça , F. Masarin , M.P. Vicentim , A. Aguiar and P.C. Pavan , Technological advances and mechanistic basis for fungal biopulping , Enzyme Microbe Technol. 43 , 178 – 185 ( 2008 ). 10.1016/j.enzmictec.2007.10.002 CASWeb of Science®Google Scholar A. Bhardwaj , A.M. Rahman , X. Wei , Z. Pei , D. Truong , M. Lucht and N. Zou , 3d printing of biomass–fungi composite material: Effects of mixture composition on print quality , J. Manuf. Mater. Process. 5 , 112 ( 2021 ). CASGoogle Scholar B. Modanloo , A. Ghazvinian , M. Matini and E. Andaroodi , Tilted arch; implementation of additive manufacturing and bio-welding of mycelium-based composites , Biomimetics 6 , 68 ( 2021 ). 10.3390/biomimetics6040068 CASPubMedWeb of Science®Google Scholar A.N.A. Goidea , D. Floudas and D. Andréen , Pulp faction: 3d printed material assemblies through microbial biotransformation , in: Fabricate 2020 , J. Burry , J. Sabin , B. Sheil and M. Skavara (Eds.), pp. 42 – 49 , UCL Press , London, UK ( 2020 ). 10.2307/j.ctv13xpsvw.10 Google Scholar E. Soh , Z.Y. Chew , N. Saeidi , A. Javadian , D. Hebel and H. Le Ferrand , Development of an extrudable paste to build mycelium-bound composites , Mater. Design 195 , 109058 ( 2020 ). 10.1016/j.matdes.2020.109058 CASWeb of Science®Google Scholar K. Joshi , M.K. Meher and K.M. Poluri , Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications , ACS Appl. Bio Mater. 3 , 1884 – 1892 ( 2020 ). 10.1021/acsabm.9b01047 CASPubMedGoogle Scholar E. Elsacker , S. Vandelook , J. Brancart , E. Peeters and L. De Laet , Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates , PLoS One 14 , e0213954 ( 2019 ). 10.1371/journal.pone.0213954 CASPubMedWeb of Science®Google Scholar C. Bruscato , E. Malvessi , R.N. Brandalise and M. Camassola , High performance of macrofungi in the production of mycelium-based biofoams using sawdust — sustainable technology for waste reduction , J. Cleaner Prod. 234 , 225 – 232 ( 2019 ). 10.1016/j.jclepro.2019.06.150 CASWeb of Science®Google Scholar R. Liu , X. Li , L. Long , Y. Sheng , J. Xu and Y. Wang , Improvement of mechanical properties of mycelium/cotton stalk composites by water immersion , Composite Interfaces , 27 , 953 – 966 ( 2020 ). 10.1080/09276440.2020.1716573 CASWeb of Science®Google Scholar P.Q. Nguyen , N.-M.D. Courchesne , A. Duraj-Thatte , P. Praveschotinunt and N.S. Joshi , Engineered living materials: Prospects and challenges for using biological systems to direct the assembly of smart materials , Adv. Mater. 30 , 1704847 ( 2018 ). 10.1002/adma.201704847 PubMedWeb of Science®Google Scholar M. Islam , G. Tudryn , R. Bucinell , L. Schadler and R. Picu , Mechanical behavior of mycelium-based particulate composites , J. Mater. Sci. 53 , 16371 – 16382 ( 2018 ). 10.1007/s10853-018-2797-z CASWeb of Science®Google Scholar M. Jones , T. Bhat , E. Kandare , A. Thomas , P. Joseph , C. Dekiwadia , R. Yuen , S. John , J. Ma and C.H. Wang , Thermal degradation and fire properties of fungal mycelium and mycelium - biomass composite materials , Sci. Reports 8 , 17583 ( 2018 ). 10.1038/s41598-018-36032-9 PubMedWeb of Science®Google Scholar J.L. Teixeira , M.P. Matos , B.L. Nascimento , S. Griza , F.S.R. Holanda and R.H. Marino , Production and mechanical evaluation of biodegradable composites by white rot fungi , Ciencia e Agrotecnologia 42 , 676 – 684 ( 2018 ). 10.1590/1413-70542018426022318 CASWeb of Science®Google Scholar F.V. Appels , S. Camere , M. Montalti , E. Karana , K.M. Jansen , J. Dijksterhuis , P. Krijgsheld and H.A.B. Wösten , Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites , Mater. Design 161 , 64 – 71 ( 2019 ). 10.1016/j.matdes.2018.11.027 CASWeb of Science®Google Scholar T. Kuribayashi , P. Lankinen , S. Hietala and K.S. Mikkonen , Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state , Composites Part A 152 , 106688 ( 2022 ). 10.1016/j.compositesa.2021.106688 CASWeb of Science®Google Scholar C. Hunt , W. Kenealy , E. Horn and C. Houtman , A biopulping mechanism: Creation of acid groups on fiber , Holzforschung 58 , 434 – 439 ( 2004 ). 10.1515/HF.2004.066 CASWeb of Science®Google Scholar A. Adamatzky and A. Gandia , Living mycelium composites discern weights via patterns of electrivcal activity , J. Bioresour. Bioprod. 7 , 26 – 32 ( 2022 ). 10.1016/j.jobab.2021.09.003 CASGoogle Scholar Z. Yang , F. Zhang , B. Still , M. White and P. Amstislavski , Physical and mechanical properties of fungal mycelium-based biofoam , J. Mater. Civil Eng. 29 , 04017030 ( 2017 ). 10.1061/(ASCE)MT.1943-5533.0001866 Web of Science®Google Scholar Y.G. Tarigan , R.-Y. Chen , H.-C. Lin , C.-Y. Jung , K. Kallawicha , T.-P. Chang , P.-C. Hung , C.-Y. Chen and H.J. Chao , Fungal bioaerosol exposure and its effects on the health of mushroom and vegetable farm workers in Taiwan , Aerosol Air Qual. Res. 17 , 2064 – 2075 ( 2017 ). 10.4209/aaqr.2016.09.0401 CASWeb of Science®Google Scholar M. Paściak , K. Pawlik , A. Gamian , B. Szponar , J. Skóra and B. Gutarowska , An airborne act-inobacteria Nocardiopsis alba isolated from bioaerosol of a mushroom compost facility , Aerobiologia 30 , 413 – 422 ( 2014 ). 10.1007/s10453-014-9336-4 PubMedWeb of Science®Google Scholar L. Jiang , D. Walczyk and G. McIntyre , A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior , J. Manuf. Sci. Eng. 139 , 021014 ( 2017 ). 10.1115/1.4034278 Web of Science®Google Scholar L. Gou , S. Li , J. Yin , T. Li and X. Liu , Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles , Constr. Build. Mater 304 , 124656 ( 2021 ). 10.1016/j.conbuildmat.2021.124656 CASWeb of Science®Google Scholar Biobased Adhesives: Sources, Characteristics and Applications ReferencesRelatedInformation