Machine Learning Model for Assessment of Risk Factors and Postoperative Day for Superficial vs Deep/Organ-Space Surgical Site Infections

单变量 医学 接收机工作特性 单变量分析 逻辑回归 梯度升压 外科 随机森林 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Wardah Rafaqat,Hafiza Sundus Fatima,Ayush Kumar,Sadaf Khan,Muhammad Khurram
出处
期刊:Surgical Innovation [SAGE]
卷期号:30 (4): 455-462 被引量:2
标识
DOI:10.1177/15533506231170933
摘要

Background. Deep and organ space surgical site infections (SSI) require more intensive treatment, may result in more severe clinical disease and may have different risk factors when compared to superficial SSIs. Machine learning (ML) algorithms provide the opportunity to analyze multiple factors to predict of the type and time of development of SSI. Therefore, we developed a ML model to predict type and postoperative week of SSI. Methodology. A case-control study was conducted among patients who developed a SSI after undergoing general surgery procedures at a tertiary care hospital between 2019 to 2020. Patients were followed for 30 days. Six ML algorithms were trained as predictors of type of infection (superficial vs deep/organ space) and time of infection, and tested using area under the receiver operating characteristic curve (AUC-ROC). Results. Data for 113 patients with SSIs was available. Of these 62 (54.8%) had superficial and 51 had (45.2%) deep/organ space infections. Compared with other ML algorithms, the XG boost univariate model had highest AUC-ROC (.84) for prediction of type of SSI and Stochastic gradient boosting univariate, logistic regression univariate, XG boost univariate, and random forest classification univariate model had the highest AUC-ROC (.74) for prediction of week of infection. Conclusions. ML models offer reasonable accuracy in prediction of superficial vs deep SSI and time of developing infection. Follow-up duration and allocation of treatment strategies can be informed by ML predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HAL完成签到,获得积分10
刚刚
Trent完成签到,获得积分10
1秒前
小小沙完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助CS采纳,获得10
3秒前
leoo完成签到,获得积分20
3秒前
水123发布了新的文献求助10
3秒前
Lei完成签到,获得积分10
4秒前
强小强完成签到,获得积分10
4秒前
5秒前
Trent发布了新的文献求助10
5秒前
5秒前
妥妥酱完成签到,获得积分10
7秒前
可爱多发布了新的文献求助10
7秒前
cqhecq完成签到,获得积分10
7秒前
kiki完成签到,获得积分10
7秒前
yfy_fairy完成签到,获得积分10
9秒前
张喜铨发布了新的文献求助30
9秒前
幽默的棒球完成签到,获得积分10
9秒前
执名之念完成签到,获得积分10
10秒前
丘比波比发布了新的文献求助50
10秒前
Forever完成签到 ,获得积分10
11秒前
小熊完成签到,获得积分10
11秒前
哒丝萌德发布了新的文献求助10
12秒前
冷静的天与完成签到,获得积分20
13秒前
14秒前
wnche完成签到,获得积分10
14秒前
哇samm完成签到,获得积分10
15秒前
香云发布了新的文献求助10
16秒前
柳七完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
清晨牛完成签到,获得积分10
17秒前
不忘初心完成签到,获得积分10
18秒前
甜兰儿发布了新的文献求助10
19秒前
韭菜盒子发布了新的文献求助10
19秒前
20秒前
活力山蝶完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195