Machine Learning Model for Assessment of Risk Factors and Postoperative Day for Superficial vs Deep/Organ-Space Surgical Site Infections

单变量 医学 接收机工作特性 单变量分析 逻辑回归 梯度升压 外科 随机森林 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Wardah Rafaqat,Hafiza Sundus Fatima,Ayush Kumar,Sadaf Khan,Muhammad Khurram
出处
期刊:Surgical Innovation [SAGE]
卷期号:30 (4): 455-462 被引量:2
标识
DOI:10.1177/15533506231170933
摘要

Background. Deep and organ space surgical site infections (SSI) require more intensive treatment, may result in more severe clinical disease and may have different risk factors when compared to superficial SSIs. Machine learning (ML) algorithms provide the opportunity to analyze multiple factors to predict of the type and time of development of SSI. Therefore, we developed a ML model to predict type and postoperative week of SSI. Methodology. A case-control study was conducted among patients who developed a SSI after undergoing general surgery procedures at a tertiary care hospital between 2019 to 2020. Patients were followed for 30 days. Six ML algorithms were trained as predictors of type of infection (superficial vs deep/organ space) and time of infection, and tested using area under the receiver operating characteristic curve (AUC-ROC). Results. Data for 113 patients with SSIs was available. Of these 62 (54.8%) had superficial and 51 had (45.2%) deep/organ space infections. Compared with other ML algorithms, the XG boost univariate model had highest AUC-ROC (.84) for prediction of type of SSI and Stochastic gradient boosting univariate, logistic regression univariate, XG boost univariate, and random forest classification univariate model had the highest AUC-ROC (.74) for prediction of week of infection. Conclusions. ML models offer reasonable accuracy in prediction of superficial vs deep SSI and time of developing infection. Follow-up duration and allocation of treatment strategies can be informed by ML predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昔年发布了新的文献求助10
2秒前
Satan发布了新的文献求助10
3秒前
执着小土豆完成签到,获得积分20
3秒前
defef发布了新的文献求助10
3秒前
Yh_alive完成签到,获得积分10
3秒前
3秒前
迷路静丹完成签到,获得积分10
4秒前
忆往昔发布了新的文献求助10
4秒前
小柠发布了新的文献求助10
5秒前
飞跃完成签到,获得积分10
6秒前
小二郎应助又又采纳,获得10
6秒前
善学以致用应助辛勤依凝采纳,获得10
6秒前
liujian发布了新的文献求助10
7秒前
哆来米发布了新的文献求助30
7秒前
无花果应助波比大王采纳,获得10
7秒前
传统的孤丝完成签到 ,获得积分10
8秒前
10秒前
10秒前
10秒前
高兴的凝蝶完成签到,获得积分10
10秒前
11秒前
思源应助朴实的绿兰采纳,获得10
11秒前
大意的觅云完成签到,获得积分10
11秒前
huohuo143完成签到,获得积分10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
求助应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
cc应助科研通管家采纳,获得20
12秒前
12秒前
町果果完成签到,获得积分10
12秒前
求助应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
12秒前
大个应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
打打应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735472
求助须知:如何正确求助?哪些是违规求助? 5360845
关于积分的说明 15330104
捐赠科研通 4879619
什么是DOI,文献DOI怎么找? 2622182
邀请新用户注册赠送积分活动 1571280
关于科研通互助平台的介绍 1528116