Machine Learning Model for Assessment of Risk Factors and Postoperative Day for Superficial vs Deep/Organ-Space Surgical Site Infections

单变量 医学 接收机工作特性 单变量分析 逻辑回归 梯度升压 外科 随机森林 机器学习 多元分析 多元统计 内科学 计算机科学
作者
Wardah Rafaqat,Hafiza Sundus Fatima,Ayush Kumar,Sadaf Khan,Muhammad Khurram
出处
期刊:Surgical Innovation [SAGE]
卷期号:30 (4): 455-462 被引量:2
标识
DOI:10.1177/15533506231170933
摘要

Background. Deep and organ space surgical site infections (SSI) require more intensive treatment, may result in more severe clinical disease and may have different risk factors when compared to superficial SSIs. Machine learning (ML) algorithms provide the opportunity to analyze multiple factors to predict of the type and time of development of SSI. Therefore, we developed a ML model to predict type and postoperative week of SSI. Methodology. A case-control study was conducted among patients who developed a SSI after undergoing general surgery procedures at a tertiary care hospital between 2019 to 2020. Patients were followed for 30 days. Six ML algorithms were trained as predictors of type of infection (superficial vs deep/organ space) and time of infection, and tested using area under the receiver operating characteristic curve (AUC-ROC). Results. Data for 113 patients with SSIs was available. Of these 62 (54.8%) had superficial and 51 had (45.2%) deep/organ space infections. Compared with other ML algorithms, the XG boost univariate model had highest AUC-ROC (.84) for prediction of type of SSI and Stochastic gradient boosting univariate, logistic regression univariate, XG boost univariate, and random forest classification univariate model had the highest AUC-ROC (.74) for prediction of week of infection. Conclusions. ML models offer reasonable accuracy in prediction of superficial vs deep SSI and time of developing infection. Follow-up duration and allocation of treatment strategies can be informed by ML predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuery发布了新的文献求助10
1秒前
nono1031发布了新的文献求助10
1秒前
朱大妹完成签到,获得积分10
1秒前
2秒前
哎嘿应助LOWRY采纳,获得10
2秒前
SciGPT应助忧伤的宝马采纳,获得10
3秒前
yu发布了新的文献求助10
4秒前
Chenzhs发布了新的文献求助10
4秒前
黄允政完成签到,获得积分10
4秒前
吲哚乙酸完成签到 ,获得积分10
5秒前
5秒前
斯文败类应助伶俐的幼晴采纳,获得10
6秒前
Luobu_521发布了新的文献求助10
7秒前
萧羽完成签到,获得积分10
7秒前
8秒前
小周小周发布了新的文献求助10
8秒前
8秒前
9秒前
robert3324应助LOWRY采纳,获得10
9秒前
haliw完成签到,获得积分10
9秒前
haofan17完成签到,获得积分10
9秒前
阿纯完成签到,获得积分10
9秒前
某某发布了新的文献求助30
9秒前
10秒前
yuery完成签到,获得积分10
10秒前
靓丽的安筠完成签到 ,获得积分10
10秒前
sheh完成签到,获得积分10
10秒前
西梅完成签到,获得积分10
10秒前
lily_may完成签到,获得积分10
11秒前
生动的战斗机完成签到,获得积分10
11秒前
里昂发布了新的文献求助30
11秒前
11秒前
zhang发布了新的文献求助10
11秒前
11秒前
12秒前
dandan发布了新的文献求助10
13秒前
13秒前
mj发布了新的文献求助10
13秒前
13秒前
M.完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251