已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and infected area segmentation of apple fire blight using image processing and deep transfer learning for site-specific management

多光谱图像 人工智能 RGB颜色模型 归一化差异植被指数 计算机科学 遥感 深度学习 植被(病理学) 卷积神经网络 计算机视觉 模式识别(心理学) 叶面积指数 地理 生态学 医学 病理 生物
作者
Md Sultan Mahmud,Long He,Azlan Zahid,Paul Heinemann,Daeun Choi,Grzegorz Krawczyk,Heping Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:209: 107862-107862 被引量:8
标识
DOI:10.1016/j.compag.2023.107862
摘要

Advanced sensing technologies and deep learning models are needed for automatic recognition of pathogens to protect trees in orchards. This study developed a fire blight disease detection and infected area segmentation system using image processing and deep learning approaches to automate the detection process in a complex apple orchard environment for site-specific management. Two types of images were acquired: multispectral images from an unmanned aerial vehicle (UAV) using a multispectral camera and red–greenblue (RGB) images from the ground using two different cameras. Multispectral images were preprocessed and used for image feature analysis by calculating vegetation indices, including excessive blue (ExB), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), modified ratio vegetation index (RVI), and triangular blueness index (TBI). Vegetation indices were calculated from a total of 60 multispectral images (30 heathy and 30 fire blight infected). Results showed that RVI was most sensitive to fire blight infection among the six indices. A support vector machine model was used to classify unhealthy tree canopies. A Mask Region-Convolutional Neural Network (Mask R-CNN) based deep learning model was developed from RGB infected images. A total of 880 images were used for training, and 220 images were used for validation. Another 110 images were used for testing the trained Mask R-CNN model. A precision of 92.8 % and recall of 91.2 % were obtained by detecting the infected canopies using a ResNet-101 backbone and intersection over union (IoU) threshold of 0.7. The high precision demonstrates the effectiveness of Mask R-CNN for the identification and segmentation of fire blight infection in images taken in complex orchard conditions. These results prove the potential of this non-invasive sensing method in detecting disease in commercial fruit production for site-specific infected canopies removing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天元神尊完成签到 ,获得积分10
1秒前
3秒前
明毓发布了新的文献求助10
3秒前
起风了发布了新的文献求助10
6秒前
7秒前
呼呼呼完成签到 ,获得积分10
9秒前
10秒前
10秒前
谷德猫宁完成签到 ,获得积分10
12秒前
jxp完成签到,获得积分10
12秒前
12秒前
13秒前
Vicgrance关注了科研通微信公众号
13秒前
13秒前
认真白薇发布了新的文献求助10
13秒前
4114发布了新的文献求助10
16秒前
16秒前
皮皮球完成签到 ,获得积分10
16秒前
雪白秋柔发布了新的文献求助10
19秒前
元小夏完成签到,获得积分10
21秒前
23秒前
医疗废物专用车乘客完成签到,获得积分10
23秒前
h41692011完成签到 ,获得积分10
24秒前
monair完成签到 ,获得积分10
24秒前
春秋发布了新的文献求助10
25秒前
奔跑西木完成签到 ,获得积分10
25秒前
26秒前
曾曾发布了新的文献求助10
27秒前
Bunny发布了新的文献求助10
28秒前
无月完成签到 ,获得积分10
29秒前
30秒前
gujianhua完成签到,获得积分10
32秒前
孙大圣完成签到 ,获得积分10
34秒前
gujianhua发布了新的文献求助10
36秒前
科目三应助认真白薇采纳,获得10
36秒前
研友_850aeZ完成签到,获得积分10
40秒前
yhmi0809发布了新的文献求助10
43秒前
欧阳完成签到 ,获得积分10
43秒前
星辰大海应助黙宇循光采纳,获得10
45秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130002
求助须知:如何正确求助?哪些是违规求助? 2780801
关于积分的说明 7750187
捐赠科研通 2436031
什么是DOI,文献DOI怎么找? 1294484
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570