Short term water demand forecast modelling using artificial intelligence for smart water management

单变量 水资源 供水 需求预测 消费(社会学) 计算机科学 人口 期限(时间) 多元统计 机器学习 运筹学 环境科学 工程类 环境工程 量子力学 生物 物理 社会学 人口学 社会科学 生态学
作者
M Kavya,Aneesh Mathew,Padala Raja Shekar,P. Sarwesh
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:95: 104610-104610 被引量:6
标识
DOI:10.1016/j.scs.2023.104610
摘要

Water is an important resource for life and its existence. Water demand is increasing with increasing economic growth and population, while the water availability is continually depleting making an increasing stress on freshwater resources, necessitating monitoring of water consumption. In addition to controlling the water supply with an efficient water management system, automating the system in terms of both monitoring and operation has received a lot of attention in recent years. Short-term water demand forecast aids in the optimal control of a water supply system and its accurate forecasting helps in reducing operating costs and saving energy. Despite extensive research, the use of demand forecasting for efficient water management has yet to be implemented in India. As a result, the focus of this research is primarily on the model for forecasting short-term water demand using artificial intelligence. A comparative study has been carried out between nine machine learning and deep learning models using the water consumption data over the period from 2020 to 2021 for the city of Hubli in Karnataka. Univariate and multivariate time series forecasting models were considered using the 10-min interval flow meter readings to find the most suitable predictive model. For univariate time series forecasting, only the water consumption was used to predict the water demand, whereas, for the multivariate model, climatic parameters, and calendar inputs (like an hour of the day, holidays, etc.) were considered along with the water consumption data. The results suggest that the deep learning models outperformed the machine learning models, and Long-Short Term Memory (LSTM) model demonstrates the best prediction performance in the two scenarios with a mean absolute error of 0.11 m3/hr for univariate model and 2.96 m3/hr for the multivariate model. The best predictive model can be used to forecast the short-term water demand for any region to ensure sustainable water resource management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木鱼发布了新的文献求助10
1秒前
研友_841rlL完成签到,获得积分10
1秒前
1秒前
luckbaby完成签到,获得积分10
1秒前
波霎完成签到,获得积分10
2秒前
刘大大发布了新的文献求助10
2秒前
叮叮当当猫完成签到,获得积分10
2秒前
2秒前
彭于晏应助包容的凡松采纳,获得10
3秒前
3秒前
蒹葭发布了新的文献求助10
4秒前
子舒关注了科研通微信公众号
4秒前
所所应助杨树采纳,获得10
4秒前
李明涵发布了新的文献求助10
5秒前
luckbaby发布了新的文献求助10
5秒前
大好人发布了新的文献求助10
6秒前
粱踏歌发布了新的文献求助10
6秒前
7秒前
默默松鼠完成签到,获得积分10
7秒前
香蕉觅云应助清脆慕山采纳,获得10
7秒前
田様应助儒雅的威采纳,获得10
7秒前
wyc关闭了wyc文献求助
7秒前
7秒前
zym发布了新的文献求助10
7秒前
余海川发布了新的文献求助10
8秒前
小蘑菇应助潘潘婷采纳,获得10
8秒前
丘比特应助和谐静竹采纳,获得10
8秒前
9秒前
9秒前
脑洞疼应助糖果采纳,获得10
9秒前
9秒前
9秒前
木鱼完成签到,获得积分20
10秒前
Eazin发布了新的文献求助10
12秒前
12秒前
北风北风完成签到 ,获得积分10
12秒前
酷波er应助粱踏歌采纳,获得10
12秒前
所所应助哈哈哈哈采纳,获得10
13秒前
Esdeath发布了新的文献求助10
13秒前
Esther发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515227
求助须知:如何正确求助?哪些是违规求助? 3097638
关于积分的说明 9236245
捐赠科研通 2792536
什么是DOI,文献DOI怎么找? 1532575
邀请新用户注册赠送积分活动 712185
科研通“疑难数据库(出版商)”最低求助积分说明 707160