Wear in or wear out: how consumers respond to repetitive influencer marketing

广告 互联网 业务 营销 背景(考古学) 内生性 独创性 价值(数学) 在线广告 心理学 经济 计算机科学 计量经济学 社会心理学 万维网 古生物学 机器学习 生物 创造力
作者
Ruibin Geng,Xi Chen,Shichao Wang
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:34 (3): 810-848 被引量:10
标识
DOI:10.1108/intr-01-2022-0075
摘要

Purpose Endorsement marketing has been widely used to generate consumer attention, interest and purchase decisions among targeted audiences. Internet celebrities who become famous on the Internet are dependent on strategic intimacy to appeal to their followers. Our study aims to examine how multiple exposures to Internet celebrity endorsements influence consumers’ click and purchase decisions in the context of influencer marketing. Design/methodology/approach Based on a unique and representative dataset, the authors first model consumers’ choices for clicks and purchases with two panel fixed-effect logit models linking clicks and purchases with the frequency of exposure to Internet celebrity endorsement. To further control the endogeneity produced by the intercorrelation between the click and purchase models, the authors also adopt the two-stage Heckman probit structure to jointly estimate the two models using Maximum Likelihood Estimation. Robustness checks confirm the effectiveness of the models. Findings The results suggest that Internet celebrity endorsement plays a significant role in bringing referral traffic to e-commerce sites but is less helpful in affecting conversion to sales. The impact of repetitive Internet celebrity endorsements on consumers’ click decisions is U-shaped, but the role of Internet celebrities as online retailers will “shape-flip” this relationship to a negative linear relation. Originality/value Our study is the first to investigate the repetitive exposure effect of Internet celebrity endorsement. The results show a contradictory pattern with a wear-out effect of repetition in the advertising literature. This is the first study to show how the endorsing self, which is a common business model in influencer marketing, moderates the effectiveness of influencer marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫春天发布了新的文献求助10
刚刚
SYLH应助微笑的采蓝采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
小熊发布了新的文献求助10
2秒前
kuxingzhe1993发布了新的文献求助10
3秒前
CodeCraft应助kingwill采纳,获得30
3秒前
3秒前
Hello应助123采纳,获得10
4秒前
科研通AI5应助哦了欧了采纳,获得10
6秒前
传奇3应助stars采纳,获得10
6秒前
6秒前
LFJ发布了新的文献求助10
6秒前
wangwang发布了新的文献求助50
6秒前
222发布了新的文献求助10
6秒前
田様应助知夏采纳,获得20
7秒前
7秒前
7秒前
酷酷摩托发布了新的文献求助10
8秒前
8秒前
8秒前
鑫问发布了新的文献求助10
9秒前
Jasper应助jjl采纳,获得10
11秒前
11秒前
guang发布了新的文献求助10
12秒前
杳鸢应助单纯的雅香采纳,获得30
13秒前
lalala发布了新的文献求助10
13秒前
佳丽发布了新的文献求助10
13秒前
爱静静应助李剑鸿采纳,获得30
14秒前
麦苗果果发布了新的文献求助100
16秒前
爱静静应助卷心菜采纳,获得10
16秒前
16秒前
18秒前
希望天下0贩的0应助建新采纳,获得10
18秒前
上官若男应助建新采纳,获得30
18秒前
科研通AI5应助建新采纳,获得30
18秒前
科研通AI5应助建新采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734