FGDAE: A new machinery anomaly detection method towards complex operating conditions

异常检测 自编码 图形 一般化 计算机科学 限制 故障检测与隔离 特征(语言学) 人工智能 模式识别(心理学) 数据挖掘 工程类 深度学习 数学 理论计算机科学 数学分析 哲学 执行机构 机械工程 语言学
作者
Shen Yan,Haidong Shao,Zhishan Min,Jiangji Peng,Baoping Cai,Bin Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:236: 109319-109319 被引量:134
标识
DOI:10.1016/j.ress.2023.109319
摘要

Recent studies on machinery anomaly detection only based on normal data training models have yielded good results in improving operation reliability. However, most of the studies have problems such as limiting the detection task to a single operating condition and inadequate utilization of multi-channel information. To overcome the above deficiencies, this paper proposes a new machinery anomaly detection method called full graph dynamic autoencoder (FGDAE) towards complex operating conditions. First, a full connected graph (FCG) is developed to obtain the global structure information by establishing structural connections between every two channels. Subsequently, a graph adaptive autoencoder (GAAE) model is constructed to aggregate multi-perspective feature information between channels by adapting changes of the operating conditions and to reconstruct the information containing the essential features of normal data. Finally, a dynamic weight optimization (DWO) strategy is designed to guide the model learning the generalization features by flexibly adjusting the data reconstruction loss weights in each condition. The proposed method performs multi-condition anomaly detection under the challenge of training models with multi-condition unbalanced normal data and achieves better performance compared to other popular anomaly detection methods on the machinery datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
潲荟完成签到,获得积分10
2秒前
4秒前
杨龘龘完成签到,获得积分10
5秒前
潲荟发布了新的文献求助10
5秒前
周锦豪完成签到 ,获得积分10
6秒前
星夜发布了新的文献求助10
7秒前
Orange应助大侦探皮卡丘采纳,获得10
8秒前
9秒前
hhdr完成签到 ,获得积分10
10秒前
frank101ljh发布了新的文献求助10
11秒前
Ddd完成签到 ,获得积分10
12秒前
烟花应助nelson采纳,获得10
13秒前
star应助shuguang采纳,获得10
13秒前
13秒前
16秒前
昏睡的傻姑完成签到,获得积分10
16秒前
16秒前
17秒前
Salt_fish应助小郭采纳,获得20
17秒前
薄雪草发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
科研通AI5应助阳光无春采纳,获得40
21秒前
星沐易发布了新的文献求助10
21秒前
21秒前
nelson完成签到,获得积分10
22秒前
22秒前
乐乐应助shi采纳,获得10
23秒前
内向若南发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
脑洞疼应助Janus采纳,获得10
25秒前
26秒前
Pluto发布了新的文献求助10
26秒前
BINGBING1230发布了新的文献求助10
29秒前
小蘑菇应助王开心采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049311
求助须知:如何正确求助?哪些是违规求助? 4277364
关于积分的说明 13333527
捐赠科研通 4092014
什么是DOI,文献DOI怎么找? 2239446
邀请新用户注册赠送积分活动 1246303
关于科研通互助平台的介绍 1174881