已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Case Study of China’s Compulsory Education System: AI Apps and Extracurricular Dance Learning

舞蹈 创造力 编舞 心理学 舞蹈教育 介绍(产科) 多媒体 教育学 数学教育 视觉艺术 计算机科学 艺术 社会心理学 医学 放射科
作者
Xiaojuan Cao
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:40 (13): 3419-3426 被引量:3
标识
DOI:10.1080/10447318.2023.2188539
摘要

The article examines the impact of AI tools in extracurricular online dance classes on student learning outcomes. The approach to interactive dance learning within Choreography (which is the mandatory discipline) using innovative M-learning platforms and apps such as Moodle and STEEZY has been introduced. An educational experiment was conducted among 40 students of the Institute of Music and Choreography at Ningxia Pedagogical University. The dance accomplishments in the control and experimental groups were assessed using the Choreographic Creativity Rating Scale in three areas: physical skills, presentation, and creativity. The mean levels of dancers' choreographic skills, as assessed by experts and audience at the end of the educational experiment, were determined. Students' projects were presented in such directions as: Hip-hop, Open Style, K-pop, House, Breaking, Popping, Whacking, Krump, Jazz Funk. The assessment of 4 levels of dance choreography (level 1—below expectations, level 2—meets some expectations, level 3—fully meets expectations, and level 4—exceeds expectations) in the areas of physical skills, presentation, and creativity of dancers' skills made it possible to compare learning outcomes in the control group and the experimental group. The expert assessment of students' achievements suggested that additional online extracurricular activities contribute to better dance skills, effective development of dancers' physical (+1.6), presentation (+1.16) and creative (+1.01) skills. This article is intended for dance instructors developing effective courses using relevant digital tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo完成签到,获得积分10
刚刚
Keymo完成签到,获得积分20
1秒前
1秒前
医研丁真完成签到 ,获得积分10
2秒前
LRxxx发布了新的文献求助10
3秒前
matteo发布了新的文献求助10
5秒前
6秒前
云染完成签到 ,获得积分10
6秒前
6秒前
yufanhui应助枭逍采纳,获得20
9秒前
立方米发布了新的文献求助10
11秒前
Du关注了科研通微信公众号
13秒前
yyy发布了新的文献求助10
16秒前
今后应助hqyqh1314采纳,获得30
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
18秒前
23秒前
23秒前
啊桂发布了新的文献求助10
24秒前
YAO发布了新的文献求助10
24秒前
matteo发布了新的文献求助10
24秒前
24秒前
25秒前
monster关注了科研通微信公众号
25秒前
26秒前
27秒前
哈哈发布了新的文献求助10
28秒前
29秒前
29秒前
Du发布了新的文献求助10
30秒前
yyy完成签到,获得积分20
30秒前
31秒前
啊桂完成签到,获得积分10
31秒前
clay_park发布了新的文献求助10
31秒前
佳远发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125756
求助须知:如何正确求助?哪些是违规求助? 2776061
关于积分的说明 7729059
捐赠科研通 2431519
什么是DOI,文献DOI怎么找? 1292114
科研通“疑难数据库(出版商)”最低求助积分说明 622387
版权声明 600380