Statistical and Machine Learning Methods for Discovering Prognostic Biomarkers for Survival Outcomes

统计学习 机器学习 计算机科学 人工智能
作者
Sijie Yao,Xuefeng Wang
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 11-21 被引量:1
标识
DOI:10.1007/978-1-0716-2986-4_2
摘要

Discovering molecular biomarkers for predicting patient survival outcomes is an essential step toward improving prognosis and therapeutic decision-making in the treatment of severe diseases such as cancer. Due to the high-dimensionality nature of omics datasets, statistical methods such as the least absolute shrinkage and selection operator (Lasso) have been widely applied for cancer biomarker discovery. Due to their scalability and demonstrated prediction performance, machine learning methods such as XGBoost and neural network models have also been gaining popularity in the community recently. However, compared to more traditional survival methods such as Kaplan-Meier and Cox regression methods, high-dimensional methods for survival outcomes are still less well known to biomedical researchers. In this chapter, we will discuss the key analytical procedures in employing these methods for identifying biomarkers associated with survival data. We will also identify important considerations that emerged from the analysis of actual omics data. Some typical instances of misapplication and misinterpretation of machine learning methods will also be discussed. Using lung cancer and head and neck cancer datasets as demonstrations, we provide step-by-step instructions and sample R codes for prioritizing prognostic biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandelion完成签到 ,获得积分10
刚刚
大胆盼烟发布了新的文献求助10
刚刚
竹焚完成签到 ,获得积分0
刚刚
刚刚
领导范儿应助壹元侑子采纳,获得10
刚刚
bingsu108完成签到,获得积分10
刚刚
一瓶水发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
啥呀啥呀完成签到,获得积分10
2秒前
Li发布了新的文献求助10
2秒前
阿卡林发布了新的文献求助10
2秒前
6666666666666666完成签到,获得积分10
2秒前
disjustar应助ohu采纳,获得50
3秒前
4秒前
白白完成签到,获得积分10
5秒前
MDZZZZZ发布了新的文献求助10
6秒前
6秒前
浅笑百一完成签到,获得积分10
6秒前
心想事成完成签到,获得积分10
6秒前
Akim应助阿拉采纳,获得10
7秒前
圈圈发布了新的文献求助10
7秒前
lande完成签到,获得积分10
7秒前
上官若男应助yj采纳,获得10
7秒前
忽忽发布了新的文献求助10
8秒前
9秒前
哎哟大侠发布了新的文献求助10
9秒前
Chloe完成签到,获得积分10
9秒前
888发布了新的文献求助10
9秒前
彭于晏应助古朵采纳,获得10
9秒前
等风来完成签到,获得积分10
10秒前
zoma发布了新的文献求助10
10秒前
爱学习的医学小白完成签到 ,获得积分10
10秒前
10秒前
Akim应助耿耿采纳,获得10
10秒前
天天快乐应助晨宇王采纳,获得10
10秒前
11秒前
楚轩完成签到,获得积分10
11秒前
11秒前
一瓶水完成签到,获得积分20
11秒前
可爱的函函应助123456采纳,获得10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781