Statistical and Machine Learning Methods for Discovering Prognostic Biomarkers for Survival Outcomes

统计学习 机器学习 计算机科学 人工智能
作者
Sijie Yao,Xuefeng Wang
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 11-21 被引量:1
标识
DOI:10.1007/978-1-0716-2986-4_2
摘要

Discovering molecular biomarkers for predicting patient survival outcomes is an essential step toward improving prognosis and therapeutic decision-making in the treatment of severe diseases such as cancer. Due to the high-dimensionality nature of omics datasets, statistical methods such as the least absolute shrinkage and selection operator (Lasso) have been widely applied for cancer biomarker discovery. Due to their scalability and demonstrated prediction performance, machine learning methods such as XGBoost and neural network models have also been gaining popularity in the community recently. However, compared to more traditional survival methods such as Kaplan-Meier and Cox regression methods, high-dimensional methods for survival outcomes are still less well known to biomedical researchers. In this chapter, we will discuss the key analytical procedures in employing these methods for identifying biomarkers associated with survival data. We will also identify important considerations that emerged from the analysis of actual omics data. Some typical instances of misapplication and misinterpretation of machine learning methods will also be discussed. Using lung cancer and head and neck cancer datasets as demonstrations, we provide step-by-step instructions and sample R codes for prioritizing prognostic biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助幽默的幻珊采纳,获得10
刚刚
思源应助a379896033采纳,获得10
1秒前
机灵夜云发布了新的文献求助10
1秒前
归1完成签到,获得积分10
1秒前
2秒前
2秒前
悦耳听芹发布了新的文献求助10
3秒前
shenyihui发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
4秒前
瘦子张应助lzw采纳,获得10
5秒前
在水一方应助简单的夜绿采纳,获得10
5秒前
刘呦呦完成签到,获得积分10
6秒前
科研通AI5应助小韬采纳,获得10
6秒前
佩楠发布了新的文献求助10
6秒前
Nicy完成签到,获得积分10
6秒前
6秒前
7秒前
个性的傲安应助cxz采纳,获得15
7秒前
完美世界应助Leechii采纳,获得10
7秒前
szj发布了新的文献求助10
7秒前
7秒前
852应助zxz采纳,获得10
8秒前
8秒前
我是老大应助black采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
刘呦呦发布了新的文献求助10
10秒前
万能图书馆应助shenyihui采纳,获得10
10秒前
科研小贩发布了新的文献求助10
10秒前
沙新镇完成签到,获得积分20
11秒前
11秒前
11秒前
佩楠完成签到,获得积分20
12秒前
江佳聪完成签到 ,获得积分10
12秒前
第七个太阳完成签到,获得积分10
12秒前
星星发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905078
求助须知:如何正确求助?哪些是违规求助? 4183208
关于积分的说明 12989244
捐赠科研通 3949224
什么是DOI,文献DOI怎么找? 2165903
邀请新用户注册赠送积分活动 1184399
关于科研通互助平台的介绍 1090668