Statistical and Machine Learning Methods for Discovering Prognostic Biomarkers for Survival Outcomes

统计学习 机器学习 计算机科学 人工智能
作者
Sijie Yao,Xuefeng Wang
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 11-21 被引量:1
标识
DOI:10.1007/978-1-0716-2986-4_2
摘要

Discovering molecular biomarkers for predicting patient survival outcomes is an essential step toward improving prognosis and therapeutic decision-making in the treatment of severe diseases such as cancer. Due to the high-dimensionality nature of omics datasets, statistical methods such as the least absolute shrinkage and selection operator (Lasso) have been widely applied for cancer biomarker discovery. Due to their scalability and demonstrated prediction performance, machine learning methods such as XGBoost and neural network models have also been gaining popularity in the community recently. However, compared to more traditional survival methods such as Kaplan-Meier and Cox regression methods, high-dimensional methods for survival outcomes are still less well known to biomedical researchers. In this chapter, we will discuss the key analytical procedures in employing these methods for identifying biomarkers associated with survival data. We will also identify important considerations that emerged from the analysis of actual omics data. Some typical instances of misapplication and misinterpretation of machine learning methods will also be discussed. Using lung cancer and head and neck cancer datasets as demonstrations, we provide step-by-step instructions and sample R codes for prioritizing prognostic biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海藻完成签到,获得积分10
刚刚
zxh完成签到,获得积分10
刚刚
舒服的幻梅完成签到,获得积分10
2秒前
3秒前
aabbcc发布了新的文献求助10
4秒前
英俊的铭应助张雯思采纳,获得10
6秒前
脑洞疼应助张雯思采纳,获得10
6秒前
隐形曼青应助张雯思采纳,获得10
6秒前
搜集达人应助张雯思采纳,获得10
6秒前
深情安青应助张雯思采纳,获得10
6秒前
思源应助张雯思采纳,获得10
6秒前
华仔应助张雯思采纳,获得10
7秒前
上官若男应助张雯思采纳,获得30
7秒前
YamDaamCaa应助张雯思采纳,获得30
7秒前
马康辉应助张雯思采纳,获得10
7秒前
7秒前
鱼啵啵发布了新的文献求助10
8秒前
JamesPei应助浮云采纳,获得10
10秒前
蝌蚪发布了新的文献求助10
10秒前
李爱国应助yuebaoji采纳,获得10
13秒前
13秒前
呵呵完成签到,获得积分10
15秒前
言西完成签到,获得积分10
16秒前
EuitNeck完成签到,获得积分10
17秒前
17秒前
星辰大海应助蝌蚪采纳,获得10
18秒前
Zhou完成签到,获得积分10
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
思源应助无情的水蓉采纳,获得30
19秒前
20秒前
21秒前
21秒前
EuitNeck发布了新的文献求助20
22秒前
乌梅不乌发布了新的文献求助10
22秒前
旋转的龙发布了新的文献求助10
23秒前
浮云发布了新的文献求助10
23秒前
明理依云发布了新的文献求助10
24秒前
lzj发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163