ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types

随机森林 计算机科学 鉴定(生物学) 集合(抽象数据类型) 序列(生物学) 机器学习 二元分类 试验装置 二进制数 人工智能 数据挖掘 计算生物学 支持向量机 数学 化学 生物 植物 生物化学 算术 程序设计语言
作者
Hua Deng,Meng Ding,Yimeng Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106844-106844 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.106844
摘要

Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dfggb发布了新的文献求助10
1秒前
科研通AI2S应助chemstation采纳,获得30
2秒前
娜娜家的大宝贝完成签到,获得积分10
2秒前
3秒前
sunshine完成签到,获得积分10
3秒前
Fiee发布了新的文献求助10
4秒前
qc关闭了qc文献求助
5秒前
Bgsister完成签到,获得积分10
5秒前
Jessica发布了新的文献求助10
5秒前
顾矜应助无辜的醉波采纳,获得10
7秒前
危机的白风完成签到,获得积分10
8秒前
9秒前
领导范儿应助pamela采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
bgt完成签到,获得积分10
10秒前
研友_VZG7GZ应助happiness采纳,获得10
10秒前
11秒前
QinCaibin发布了新的文献求助10
13秒前
金戈发布了新的文献求助10
13秒前
香蕉觅云应助xue采纳,获得10
13秒前
13秒前
bgt发布了新的文献求助100
14秒前
14秒前
dfggb完成签到,获得积分10
14秒前
14秒前
满意幻莲完成签到,获得积分10
15秒前
LingYi发布了新的文献求助30
15秒前
15秒前
烟花应助古丹娜采纳,获得10
16秒前
勤奋映梦完成签到,获得积分10
16秒前
Fiee完成签到,获得积分10
16秒前
17秒前
17秒前
十二月发布了新的文献求助30
17秒前
18秒前
19秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712