ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types

随机森林 计算机科学 鉴定(生物学) 集合(抽象数据类型) 序列(生物学) 机器学习 二元分类 试验装置 二进制数 人工智能 数据挖掘 计算生物学 支持向量机 数学 化学 生物 植物 算术 生物化学 程序设计语言
作者
Hua Deng,Meng Ding,Yimeng Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106844-106844 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.106844
摘要

Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸小懒猪应助zqzyyds采纳,获得10
2秒前
annzl发布了新的文献求助10
3秒前
4秒前
7秒前
Ava应助灵巧千易采纳,获得10
7秒前
念姬发布了新的文献求助10
8秒前
9秒前
annzl完成签到,获得积分10
12秒前
13秒前
Yuna完成签到,获得积分10
14秒前
赘婿应助乒坛巨人采纳,获得10
15秒前
15秒前
15秒前
小锅巴完成签到,获得积分10
17秒前
kyt发布了新的文献求助10
17秒前
18秒前
19秒前
April发布了新的文献求助10
19秒前
寒树发布了新的文献求助10
19秒前
20秒前
linmo发布了新的文献求助10
20秒前
yelis完成签到,获得积分10
24秒前
25秒前
灵巧千易发布了新的文献求助10
25秒前
25秒前
英姑应助寒树采纳,获得10
26秒前
hugeyoung发布了新的文献求助20
29秒前
噔噔蹬完成签到 ,获得积分10
29秒前
ozy完成签到 ,获得积分10
29秒前
31秒前
31秒前
33秒前
优美的谷完成签到,获得积分10
34秒前
未来可期发布了新的文献求助10
35秒前
Masetti1完成签到 ,获得积分10
35秒前
细心的恋风完成签到,获得积分10
35秒前
LL关闭了LL文献求助
36秒前
courage完成签到,获得积分10
38秒前
39秒前
欧阳正义发布了新的文献求助10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966919
求助须知:如何正确求助?哪些是违规求助? 3512387
关于积分的说明 11162970
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432