ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types

随机森林 计算机科学 鉴定(生物学) 集合(抽象数据类型) 序列(生物学) 机器学习 二元分类 试验装置 二进制数 人工智能 数据挖掘 计算生物学 支持向量机 数学 化学 生物 植物 算术 生物化学 程序设计语言
作者
Hua Deng,Meng Ding,Yimeng Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106844-106844 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.106844
摘要

Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmyyy发布了新的文献求助10
1秒前
1秒前
Brady6完成签到,获得积分10
1秒前
猫儿发布了新的文献求助30
3秒前
可以2完成签到,获得积分10
5秒前
木卫二发布了新的文献求助10
6秒前
Flynn完成签到 ,获得积分10
6秒前
wp4455777完成签到,获得积分10
6秒前
小哈完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
果果完成签到 ,获得积分20
10秒前
111完成签到,获得积分10
10秒前
Hello应助tulips采纳,获得10
11秒前
梓唯忧完成签到 ,获得积分10
11秒前
鸽子发布了新的文献求助10
12秒前
研友_yLpYkn发布了新的文献求助10
13秒前
222完成签到 ,获得积分10
13秒前
我刷的烧饼贼亮完成签到 ,获得积分10
14秒前
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
嘿嘿应助科研通管家采纳,获得10
15秒前
YY完成签到 ,获得积分10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
shi hui应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
shi hui应助科研通管家采纳,获得10
16秒前
Zhao完成签到,获得积分10
16秒前
BareBear应助科研通管家采纳,获得10
16秒前
16秒前
fzzf完成签到,获得积分10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
那时花开应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294333
求助须知:如何正确求助?哪些是违规求助? 4444199
关于积分的说明 13832392
捐赠科研通 4328271
什么是DOI,文献DOI怎么找? 2376032
邀请新用户注册赠送积分活动 1371362
关于科研通互助平台的介绍 1336532