ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types

随机森林 计算机科学 鉴定(生物学) 集合(抽象数据类型) 序列(生物学) 机器学习 二元分类 试验装置 二进制数 人工智能 数据挖掘 计算生物学 支持向量机 数学 化学 生物 植物 生物化学 算术 程序设计语言
作者
Hua Deng,Meng Ding,Yimeng Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106844-106844 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.106844
摘要

Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏冰完成签到,获得积分10
刚刚
刚刚
yy完成签到 ,获得积分10
刚刚
崔宏玺完成签到,获得积分10
刚刚
1秒前
yifei完成签到,获得积分10
1秒前
3秒前
sh应助Schroenius采纳,获得10
3秒前
科研通AI6应助steraphia采纳,获得10
3秒前
bubble嘞完成签到 ,获得积分10
3秒前
zhou123432发布了新的文献求助10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
在水一方应助缥缈熊猫采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
yh发布了新的文献求助10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
zyq发布了新的文献求助10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
科研通AI2S应助干净砖头采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
aben050361完成签到,获得积分10
6秒前
7秒前
华仔应助我要资料啊采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419054
求助须知:如何正确求助?哪些是违规求助? 4534549
关于积分的说明 14145079
捐赠科研通 4450939
什么是DOI,文献DOI怎么找? 2441488
邀请新用户注册赠送积分活动 1433134
关于科研通互助平台的介绍 1410503