已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types

随机森林 计算机科学 鉴定(生物学) 集合(抽象数据类型) 序列(生物学) 机器学习 二元分类 试验装置 二进制数 人工智能 数据挖掘 计算生物学 支持向量机 数学 化学 生物 植物 算术 生物化学 程序设计语言
作者
Hua Deng,Meng Ding,Yimeng Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106844-106844 被引量:25
标识
DOI:10.1016/j.compbiomed.2023.106844
摘要

Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Beton_X发布了新的文献求助30
1秒前
彭于晏应助EadonChen采纳,获得10
2秒前
smart完成签到,获得积分10
3秒前
打打应助h2o采纳,获得10
4秒前
科研通AI6.1应助虚心飞鸟采纳,获得10
4秒前
李健的小迷弟应助向阳采纳,获得10
5秒前
褚幻香发布了新的文献求助10
8秒前
范范完成签到,获得积分20
9秒前
12秒前
Yusra完成签到 ,获得积分10
13秒前
不懈奋进应助LO7pM2采纳,获得30
14秒前
15秒前
蛋挞完成签到 ,获得积分10
15秒前
向阳完成签到,获得积分10
15秒前
455完成签到,获得积分10
16秒前
向阳发布了新的文献求助10
19秒前
Akim应助柚子采纳,获得10
20秒前
大模型应助PAPA采纳,获得10
21秒前
22秒前
Hello应助科研通管家采纳,获得10
23秒前
Hilda007应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得10
23秒前
Hilda007应助科研通管家采纳,获得10
23秒前
CCCheny应助科研通管家采纳,获得10
23秒前
YifanWang应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
24秒前
CCCheny应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得100
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得100
24秒前
Hello应助科研通管家采纳,获得10
24秒前
无极微光应助科研通管家采纳,获得20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938