A SmNiO3 memristor with artificial synapse function properties and the implementation of Boolean logic circuits

记忆电阻器 计算机科学 布尔函数 电子线路 功能(生物学) 突触 逻辑门 材料科学 生物系统 纳米技术 神经科学 电子工程 电气工程 算法 工程类 生物 进化生物学
作者
Lei Li,Dongqing Yu,Yiheng Wei,Yong Sun,Jianhui Zhao,Zhenyu Zhou,Jie Yang,Zichang Zhang,Xiaobing Yan
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:15 (15): 7105-7114 被引量:7
标识
DOI:10.1039/d2nr06044b
摘要

Recently, with the improvement of the requirements for fast and efficient data processing in the era of artificial intelligence, new forms of computing have come into being. Developing memristor devices that can simulate the brain's computing neutral network is particularly important for applications in the field of artificial intelligence. However, there are still some challenges in their biological function simulation and related circuit design. In this work, a memristor based on perovskite rare earth nickelates (RNiO3) is presented with excellent electrical performance, including three orders of magnitude higher current switching ratio and good repeatability, and can achieve bidirectional conductance regulation like weight modulation in bio-synapse. Furthermore, the synaptic like characteristics of the device have been mimicked successfully, such as excitatory postsynaptic current (EPSC), paired pulse facilitation (PPF), classical double pulse spike time-dependent plasticity (classical pair-STDP), triplet spike time-dependent plasticity (triplet-STDP), short-term plasticity (STP), long-term plasticity (LTP), the refractory period phenomenon and learning and forgetting rules. In particular, two synaptic devices and a leaky integrate-and-fire (LIF) neuron device are used to achieve a logic gate circuit to realize "AND", "OR", and "NOT" functions. The device paves the way for the application of high-density circuits in artificial intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
传奇3应助xiaostou采纳,获得10
1秒前
1秒前
OO发布了新的文献求助10
1秒前
zjy发布了新的文献求助10
2秒前
星辰大海应助Seamewww采纳,获得10
2秒前
2秒前
3秒前
yueyue_liu发布了新的文献求助20
3秒前
3秒前
研友_Z33zkZ发布了新的文献求助10
4秒前
xiaohong发布了新的文献求助30
4秒前
5秒前
gdh发布了新的文献求助10
5秒前
julia应助yyan采纳,获得10
5秒前
6秒前
6秒前
宇洁发布了新的文献求助10
6秒前
香蕉觅云应助阿猫采纳,获得10
6秒前
6秒前
共享精神应助傲娇的芝麻采纳,获得10
6秒前
刘cl发布了新的文献求助10
7秒前
7秒前
汉堡包应助Clovis33采纳,获得10
8秒前
panx发布了新的文献求助10
8秒前
8秒前
sue401发布了新的文献求助10
8秒前
9秒前
皮怪发布了新的文献求助10
9秒前
大个应助饿了么滴采纳,获得10
9秒前
10秒前
10秒前
王晓发布了新的文献求助10
11秒前
从容万恶完成签到,获得积分10
11秒前
sweat发布了新的文献求助10
12秒前
领悟完成签到,获得积分10
12秒前
852应助科研CY采纳,获得10
12秒前
orixero应助瓜兮兮的卷毛采纳,获得10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469070
求助须知:如何正确求助?哪些是违规求助? 3062129
关于积分的说明 9078017
捐赠科研通 2752484
什么是DOI,文献DOI怎么找? 1510450
科研通“疑难数据库(出版商)”最低求助积分说明 697899
邀请新用户注册赠送积分活动 697759