秩(图论)
规范(哲学)
前景检测
模式识别(心理学)
人工智能
计算机科学
数学
拉普拉斯算子
比例(比率)
组合数学
目标检测
数学分析
物理
量子力学
政治学
法学
作者
Ruibo Fan,Mingli Jing,Lan Li,Jingang Shi,Yufeng Wei
标识
DOI:10.1117/1.jei.32.2.023021
摘要
Low-rank and sparse decomposition (LRSD) plays a vital role in foreground–background separation. The existing LRSD methods have the drawback: imprecise surrogate functions of rank and sparsity. We propose the weighted Schatten p-norm (WSN) and Laplacian scale mixture (LSM) method based on LRSD for foreground–background separation, which introduces the WSN and LSM to improve this drawback. To demonstrate the performance of the proposed method, it is applied to foreground–background separation and gets the highest average F-measure score.
科研通智能强力驱动
Strongly Powered by AbleSci AI