Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen

乙二醇 格式化 催化作用 电催化剂 无机化学 草酸盐 化学 电化学 析氧 材料科学 有机化学 电极 物理化学
作者
Junshan Li,Luming Li,Xingyu Ma,Xu Han,Congcong Xing,Xueqiang Qi,Ren He,Jordi Arbiol,Hui-Yan Pan,Jun Zhao,Jie Deng,Yu Zhang,Yao‐Yue Yang,Andreu Cabot
出处
期刊:Advanced Science [Wiley]
卷期号:10 (15) 被引量:81
标识
DOI:10.1002/advs.202300841
摘要

There is an urgent need for cost-effective strategies to produce hydrogen from renewable net-zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1.395 V to drive a current density of 50 mA cm-2 in 1 m potassium hydroxide (KOH) and 1 m EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol-to-oxalate pathway to be favored via the glycolate formation, where the CC bond is broken and further electro-oxidized to formate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AA发布了新的文献求助10
刚刚
刚刚
刚刚
小二郎应助小喵采纳,获得10
1秒前
1秒前
stt发布了新的文献求助10
1秒前
2秒前
Oak完成签到 ,获得积分10
2秒前
2秒前
lyy完成签到 ,获得积分10
2秒前
3秒前
Anne应助fancy采纳,获得10
3秒前
3秒前
研友_汪老头完成签到,获得积分10
3秒前
雪花君完成签到,获得积分10
4秒前
派大星发布了新的文献求助10
4秒前
科研通AI5应助hzauchen采纳,获得10
4秒前
八九完成签到,获得积分10
5秒前
快乐小白菜应助圈圈采纳,获得10
5秒前
6秒前
冷艳后妈发布了新的文献求助10
6秒前
蒋念寒发布了新的文献求助10
6秒前
36456657应助CC采纳,获得10
6秒前
猪猪猪发布了新的文献求助10
6秒前
6秒前
scxl2000完成签到,获得积分10
7秒前
7秒前
oyc完成签到,获得积分10
7秒前
7秒前
7秒前
Leexxxhaoo发布了新的文献求助10
8秒前
FFFFFFF完成签到,获得积分10
8秒前
8秒前
LIU发布了新的文献求助10
8秒前
小二郎应助医路有你采纳,获得10
8秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
8秒前
可爱的函函应助一直采纳,获得20
8秒前
ufuon完成签到,获得积分10
9秒前
VDC应助MrFamous采纳,获得50
10秒前
娜行发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678