A novel dual-attention optimization model for points classification of power quality disturbances

人工智能 特征(语言学) 模式识别(心理学) 计算机科学 卷积神经网络 噪音(视频) 频道(广播) 网格 工程类 数学 计算机网络 哲学 语言学 几何学 图像(数学)
作者
Yulong Liu,Tao Jin,Mohamed A. Mohamed
出处
期刊:Applied Energy [Elsevier]
卷期号:339: 121011-121011 被引量:15
标识
DOI:10.1016/j.apenergy.2023.121011
摘要

The rapid development of the power grid makes power quality disturbances (PQDs) more complex. Accurately classifying PQDs and measuring the duration of each disturbance element are both crucial for studying the causes of PQDs and subsequent countermeasures. To satisfy the requirements, a novel dual-attention optimization model (DAOM) is presented in this paper for points classification. First, the local feature attention mechanism (LFAM) based on Hilbert transform (HT) is proposed in the input layer to enhance the local features of PQDs. Subsequently, on the basis of convolutional neural network (CNN), a channel attention mechanism (CAM) based on squeeze-and-excitation network (SENet) is introduced to each convolutional layer to achieve the purpose of automatically learning the importance of each channel feature. Finally, each sampling point is classified in the form of multiclass-multioutput. The proposed model is built through the Keras framework, and a synthetic database containing 49 types of PQDs is established to test the model. The proposal achieves an average classification accuracy of 98.95% in a 30 dB white noise environment, which is more precise and robust than other deep learning-based models. At the same time, the proposed model consistently performs best when evaluated through imbalanced data classification metrics and nonparametric test results. Unlike traditional methods, the proposal can accurately identify the occurrence and end time of each element in complex PQDs. Moreover, through a hardware experiment based on the AC source, the proposed model achieves an average accuracy of 98.30%, which is ahead of other comparison models as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
万能图书馆应助bobo1129采纳,获得10
刚刚
懵懂的涵梅关注了科研通微信公众号
刚刚
研友_ngqgY8完成签到,获得积分10
1秒前
脑洞疼应助撸撸大仙采纳,获得10
1秒前
陈陈发布了新的文献求助10
2秒前
NIUBEN发布了新的文献求助10
2秒前
3秒前
1LDan发布了新的文献求助30
4秒前
balabala发布了新的文献求助10
4秒前
苏木发布了新的文献求助10
4秒前
4秒前
5秒前
冷酷蛋挞完成签到,获得积分10
6秒前
真是麻烦完成签到 ,获得积分10
7秒前
FYJY完成签到,获得积分10
7秒前
情怀应助Xx采纳,获得10
7秒前
8秒前
毕业就集采的苦命人完成签到,获得积分10
8秒前
Johnny完成签到,获得积分10
9秒前
陈陈完成签到,获得积分10
9秒前
Hello应助冷酷蛋挞采纳,获得10
10秒前
LZJ发布了新的文献求助10
11秒前
Maksim完成签到,获得积分10
11秒前
子车雁开完成签到,获得积分10
12秒前
甜甜的满天完成签到 ,获得积分20
13秒前
Dr大壮发布了新的文献求助10
13秒前
绝世冰淇淋完成签到 ,获得积分10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
ppg123应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
领导范儿应助啦啦啦啦采纳,获得20
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
qazx应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464070
求助须知:如何正确求助?哪些是违规求助? 3057259
关于积分的说明 9056694
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696491
邀请新用户注册赠送积分活动 696004