Simulative Investigation of optimal Multi‐Parameterized Cooling Plate Topologies for different Battery System Configurations

网络拓扑 电池(电) 参数化复杂度 计算 瞬态(计算机编程) 计算机科学 拓扑(电路) 还原(数学) 机械工程 模拟 工程类 算法 电气工程 功率(物理) 数学 物理 操作系统 量子力学 几何学
作者
Alexander Epp,Sunny Rai,Finn van Ginneken,Andreas Varchmin,Jürgen Köhler,Dirk Uwe Sauer
出处
期刊:Energy technology [Wiley]
标识
DOI:10.1002/ente.202300405
摘要

To design an effective battery thermal management system (BTMS), multiple simulations with different levels of modeling, physics, and details are generally needed. However, complex and high-resolution models are time-consuming, both in terms of buildup and computation time. Especially the fast-moving early-stage development phases demand all-in-one model approaches allowing for quick and efficient concept evaluations. To meet these requirements, this work proposes a lumped-mass modeling approach and derives a methodology for evaluating various liquid cooling plate topologies. The framework aims to assist the volatile concept phase of battery system development in providing multidimensionally optimized cooling plate topologies. A novel modeling strategy preselects plate parameters using a reduction procedure that couples the transient models’ accuracy with the steady-state models’ computation time advantages. The results analyze different initial battery geometries, indicating significant deviations in their optimized cooling plate properties. Plate topologies are varied between their main construction design parameters: tube size and tube-to-tube distance. In addition to the battery’s mean temperature, further meaningful parameters like the resulting volume flow are evaluated, compared, and discussed for the entire set of battery geometries. Subsequent sensitivity analyses show geometry-related optimal plate topologies depending on the cooling circuit performance, stressing the necessity for early-stage cooling plate investigations. This article is protected by copyright. All rights reserved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
mfstone发布了新的文献求助10
1秒前
LiLi完成签到,获得积分10
2秒前
仁爱的老四完成签到 ,获得积分10
3秒前
李健的小迷弟应助学术z采纳,获得10
3秒前
科研通AI5应助归海紫翠采纳,获得30
4秒前
热情的初兰完成签到 ,获得积分10
5秒前
顺顺完成签到,获得积分10
5秒前
莫妮卡卡完成签到,获得积分10
5秒前
nbing完成签到,获得积分10
6秒前
SCI发布了新的文献求助50
6秒前
小猫多鱼完成签到,获得积分10
7秒前
7秒前
7秒前
默默尔烟发布了新的文献求助10
7秒前
7秒前
7秒前
宁静致远完成签到,获得积分10
7秒前
天天快乐应助内向秋寒采纳,获得10
10秒前
sfafasfsdf完成签到,获得积分10
10秒前
10秒前
luuuuuu发布了新的文献求助10
11秒前
lai发布了新的文献求助30
11秒前
11秒前
zrk发布了新的文献求助10
11秒前
11秒前
12秒前
ZJJ完成签到,获得积分10
12秒前
花开的声音1217完成签到,获得积分10
13秒前
古药完成签到,获得积分10
14秒前
赘婿应助烟雨行舟采纳,获得10
14秒前
seal发布了新的文献求助10
15秒前
15秒前
16秒前
不吃香菜发布了新的文献求助10
16秒前
RC_Wang应助ZJJ采纳,获得10
16秒前
Chridy发布了新的文献求助10
17秒前
17秒前
asipilin完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794