网络拓扑
电池(电)
参数化复杂度
计算
瞬态(计算机编程)
计算机科学
拓扑(电路)
还原(数学)
机械工程
模拟
工程类
算法
电气工程
功率(物理)
数学
物理
操作系统
量子力学
几何学
作者
Alexander Epp,Sunny Rai,Finn van Ginneken,Andreas Varchmin,Jürgen Köhler,Dirk Uwe Sauer
标识
DOI:10.1002/ente.202300405
摘要
To design an effective battery thermal management system (BTMS), multiple simulations with different levels of modeling, physics, and details are generally needed. However, complex and high-resolution models are time-consuming, both in terms of buildup and computation time. Especially the fast-moving early-stage development phases demand all-in-one model approaches allowing for quick and efficient concept evaluations. To meet these requirements, this work proposes a lumped-mass modeling approach and derives a methodology for evaluating various liquid cooling plate topologies. The framework aims to assist the volatile concept phase of battery system development in providing multidimensionally optimized cooling plate topologies. A novel modeling strategy preselects plate parameters using a reduction procedure that couples the transient models’ accuracy with the steady-state models’ computation time advantages. The results analyze different initial battery geometries, indicating significant deviations in their optimized cooling plate properties. Plate topologies are varied between their main construction design parameters: tube size and tube-to-tube distance. In addition to the battery’s mean temperature, further meaningful parameters like the resulting volume flow are evaluated, compared, and discussed for the entire set of battery geometries. Subsequent sensitivity analyses show geometry-related optimal plate topologies depending on the cooling circuit performance, stressing the necessity for early-stage cooling plate investigations. This article is protected by copyright. All rights reserved.
科研通智能强力驱动
Strongly Powered by AbleSci AI