Detection of wheat scab fungus spores utilizing the Yolov5-ECA-ASFF network structure

孢子 镰刀菌 人工智能 稳健性(进化) 发芽 模式识别(心理学) 计算机科学 生物 园艺 植物 生物化学 基因
作者
Dongyan Zhang,Wenhao Zhang,Tao Cheng,Xin‐Gen Zhou,Zihao Yan,Yuhang Wu,Gan Zhang,Yi Xue
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:210: 107953-107953 被引量:7
标识
DOI:10.1016/j.compag.2023.107953
摘要

Rapid detection and identification of Fusarium germinate spores play a vital role in the early prediction and effective management of wheat scab disease. This study proposed an improved Yolov5-ECA-ASFF target detection algorithm that addressed the challenges of small size and precise localization of spore image targets. The algorithm incorporated the attention mechanism module (ECA-Net) and adaptive feature fusion mechanism (ASFF) into the feature pyramid structure of YOLO, effectively tackling issues related to small size, limited characteristics, and unclear attributes of F. germinate spores. The results demonstrate that the proposed model achieved an average recognition accuracy of 98.57% for F. graminearum spores, surpassing the original Yolov5s algorithm’s mAP value by 6.8%. The proposed method outperformed other mainstream target detection networks like Yolov4 and Faster-RCNN. It also exhibited excellent recognition outcomes in scenarios involving multiple targets and complex backgrounds, while maintaining model robustness even when faced with similar appearance, morphology, and color characteristics of various scab spores. In conclusion, this method accurately detected and identified wheat scab spores in the presence of a variety of mixed spores, providing crucial technical support for automated detection of wheat scab spores and early prediction of wheat scab outbreaks under complex field environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听风发布了新的文献求助10
1秒前
ohbuisgf完成签到,获得积分20
1秒前
he发布了新的文献求助10
2秒前
罐罐发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
CodeCraft应助ss采纳,获得10
5秒前
小琦琦发布了新的文献求助10
5秒前
tuanheqi应助可爱香槟采纳,获得20
8秒前
aa完成签到,获得积分10
8秒前
9秒前
请叫我风吹麦浪应助aaaaa采纳,获得10
9秒前
9秒前
9秒前
飞雪完成签到,获得积分10
10秒前
11秒前
12秒前
左丘秋尽应助文件撤销了驳回
12秒前
15秒前
yuyan完成签到,获得积分10
15秒前
16秒前
liii应助aaaaa采纳,获得10
17秒前
852应助小琦琦采纳,获得10
20秒前
烟花应助斯文冷梅采纳,获得10
20秒前
21秒前
Shennnn完成签到 ,获得积分20
22秒前
23秒前
刘忙完成签到,获得积分10
27秒前
27秒前
英姑应助Kevin Huang采纳,获得10
27秒前
27秒前
yy完成签到,获得积分10
27秒前
28秒前
28秒前
脑洞疼应助岁岁有采纳,获得10
28秒前
77完成签到,获得积分10
28秒前
大个应助干净的夜蓉采纳,获得10
29秒前
请叫我风吹麦浪应助he采纳,获得10
29秒前
惕守完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420