A New Model for Charge Separation by Proton Transfer During Collision Between Ice Particles in Thunderstorms

化学物理 离子 冰晶 质子 扩散 电荷(物理) 冰Ih 电场 材料科学 原子物理学 化学 物理 分子 气象学 核物理学 热力学 量子力学 有机化学
作者
Heon Kang,Rohan Jayaratne,Earle Williams
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (12) 被引量:1
标识
DOI:10.1029/2023jd038626
摘要

Abstract Field and laboratory observations strongly support the view that the development of electric fields in thunderstorms is caused by charge separation during rebounding collisions between ice crystals and graupels, followed by their gravitational separation. Although several plausible microphysical mechanisms have been proposed to explain the physics of charge separation, none have been found to be fully consistent with the experimental evidence, and a fresh approach is necessary. We propose a new mechanism for charge separation in ice‐ice collisions based on the fundamental molecular mechanism of charge transport in ice, involving the diffusion of H + ions (excess protons or positive ionic defects) via a proton hopping relay along the hydrogen‐bond network of ice and the trapping and release of H + ions from L ‐orientational defects. The collision of two ice particles leads to the formation of a transient crystalline ice bridge at the contact point, which is spontaneously driven by the tendency for ice sintering, permitting rapid H + diffusion between the two particles. Charge separation is achieved by the asymmetry in the concentrations of H + ions or L ‐orientational defects between the two ice surfaces. The proposed H + transport mechanism successfully explains the direction and magnitude of charge transfer as well as its dependence on the relative growth rates of the two ice surfaces observed in laboratory studies. In addition, it offers a molecular‐level interpretation of the empirical rule that, during a collision, the faster‐growing ice surface is positively charged at the expense of negative charging of the slower‐growing or sublimating ice surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈无敌完成签到 ,获得积分10
刚刚
life完成签到,获得积分10
2秒前
顾矜应助叶祥采纳,获得10
3秒前
xiaoz完成签到,获得积分10
4秒前
hgzz发布了新的文献求助10
5秒前
6秒前
丹丹完成签到 ,获得积分10
6秒前
7秒前
胡英俊发布了新的文献求助10
7秒前
Zp完成签到,获得积分10
10秒前
鸭梨很大完成签到 ,获得积分10
11秒前
颜靖仇发布了新的文献求助10
12秒前
dongdong发布了新的文献求助10
13秒前
8R60d8应助Robin采纳,获得10
14秒前
breeze完成签到,获得积分10
14秒前
白华苍松发布了新的文献求助20
16秒前
19秒前
Ava应助伶俐小凝采纳,获得10
19秒前
19秒前
wang发布了新的文献求助10
23秒前
kelexh完成签到,获得积分20
24秒前
Mmxn完成签到,获得积分10
25秒前
赫赫发布了新的文献求助30
25秒前
淡然乌完成签到,获得积分10
26秒前
无灾无难到公卿完成签到 ,获得积分10
26秒前
dongdong完成签到,获得积分10
27秒前
周凡淇发布了新的文献求助10
27秒前
28秒前
大模型应助kelexh采纳,获得10
29秒前
32秒前
ocean发布了新的文献求助10
33秒前
木木VV发布了新的文献求助10
35秒前
37秒前
GY完成签到,获得积分10
39秒前
撒玉完成签到,获得积分10
39秒前
哦哦完成签到,获得积分10
41秒前
张炎完成签到,获得积分0
41秒前
NexusExplorer应助木木VV采纳,获得10
43秒前
GY发布了新的文献求助10
43秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269094
求助须知:如何正确求助?哪些是违规求助? 2908697
关于积分的说明 8346462
捐赠科研通 2578839
什么是DOI,文献DOI怎么找? 1402481
科研通“疑难数据库(出版商)”最低求助积分说明 655455
邀请新用户注册赠送积分活动 634602