Integrated multiomics analysis and machine learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer

免疫疗法 医学 膀胱癌 肿瘤科 内科学 癌症 机器学习 生物信息学 计算生物学 计算机科学 生物
作者
Guangdi Chu,Xiaoyu Ji,Yonghua Wang,Haitao Niu
出处
期刊:Molecular therapy. Nucleic acids [Elsevier]
卷期号:33: 110-126 被引量:17
标识
DOI:10.1016/j.omtn.2023.06.001
摘要

Muscle-invasive urothelial cancer (MUC), characterized by high aggressiveness and significant heterogeneity, is currently lacking highly precise individualized treatment options. We used a computational pipeline to synthesize multiomics data from MUC patients using 10 clustering algorithms, which were then combined with 10 machine learning algorithms to identify molecular subgroups of high resolution and develop a robust consensus machine learning-driven signature (CMLS). Through multiomics clustering, we identified three cancer subtypes (CSs) that are related to prognosis, with CS2 exhibiting the most favorable prognostic outcome. Subsequent screening enabled identification of 12 hub genes that constitute a CMLS with robust predictive power for prognosis. The low-CMLS group exhibited a more favorable prognosis and greater responsiveness to immunotherapy and was more likely to exhibit the "hot tumor" phenotype. The high-CMLS group had a poor prognosis and lower likelihood of benefitting from immunotherapy, but dasatinib and romidepsin may serve as promising treatments for them. Comprehensive analysis of multiomics data can offer important insights and further refine the molecular classification of MUC. Identification of CMLS represents a valuable tool for early prediction of patient prognosis and for screening potential candidates likely to benefit from immunotherapy, with broad implications for clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
刘丽梅完成签到 ,获得积分10
4秒前
4秒前
菜菜发布了新的文献求助10
5秒前
yuu发布了新的文献求助10
8秒前
10秒前
449完成签到,获得积分20
11秒前
ada关闭了ada文献求助
13秒前
夜冷瞳发布了新的文献求助10
15秒前
会笑的蜗牛完成签到 ,获得积分10
15秒前
雍遥发布了新的文献求助10
15秒前
15秒前
Cathy完成签到,获得积分10
16秒前
17秒前
和谐亦瑶完成签到,获得积分10
18秒前
琥珀川完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
重要寄松发布了新的文献求助10
21秒前
Megumi发布了新的文献求助10
22秒前
复杂沛白完成签到,获得积分20
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
不配.应助科研通管家采纳,获得10
22秒前
22秒前
无花果应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
脑洞疼应助嘚嘚嘚采纳,获得10
22秒前
叙温雨发布了新的文献求助10
23秒前
449发布了新的文献求助10
23秒前
26秒前
小高发布了新的文献求助10
26秒前
李健的小迷弟应助月光族采纳,获得10
28秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149249
求助须知:如何正确求助?哪些是违规求助? 2800330
关于积分的说明 7839533
捐赠科研通 2457883
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628441
版权声明 601706