亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Agent Personalized Recommendation System in E-Commerce based on User

计算机科学 协同过滤 推荐系统 聚类分析 电子商务 相似性(几何) 互联网 情报检索 精确性和召回率 过程(计算) 万维网 数据挖掘 人工智能 操作系统 图像(数学)
作者
Nagagopiraju Vullam,Sai Srinivas Vellela,Venkateswara Reddy B,M Venkateswara Rao,Khader Basha Sk,D Roja
标识
DOI:10.1109/icaaic56838.2023.10140756
摘要

As more sectors began to switch from conventional business models to e-commerce in response to the general trend toward mobile Internet use, the scale of e-commerce grew rapidly. There are three types of recommendation systems: hybrid, collaborative, content-based. Content based systems take into consideration the characteristics of the recommended objects. Then, titles in the database that have been classified as "romantic" are selected using a content-based recommendation method. Collaborative filtering systems utilize similarity measures to recommend items that are shared by individuals or objects with similar interests. Users are recommended items based on their preferences. In the recommendation system, collaborative filtering is the most popular and effective suggestion process. However, system performance impact as the amount of time required to locate the target user's closest neighbor across the entire user space increases with the number of users and products in the e-commerce system. The applied and designed Multi-Agent personalized recommendation system in E-commerce can be analyzed using user clustering in the Multi-Agent to E-commerce personalized recommendation system. An implementation strategy for recommendations based on user clustering is shown in this analysis. According to their scores for commodity categories, users are clustered, and only the nearest neighbours in their categories are searched, so that as many nearest neighbors as possible can be searched. The accuracy, recall, and specificity of this analysis are used to calculate its performance. In this analysis the presented method will give better results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
33完成签到,获得积分0
2秒前
小蘑菇应助Maximoff采纳,获得10
2秒前
zbblp1发布了新的文献求助10
5秒前
宋晓蓝完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
Bonnie发布了新的文献求助10
8秒前
Hayat发布了新的文献求助200
18秒前
万能图书馆应助百里幻竹采纳,获得10
26秒前
41秒前
百里幻竹发布了新的文献求助10
46秒前
百里幻竹发布了新的文献求助10
57秒前
1分钟前
Hello应助百里幻竹采纳,获得30
1分钟前
Hello应助啦啦啦采纳,获得10
1分钟前
SCT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Maximoff发布了新的文献求助10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
百里幻竹发布了新的文献求助30
1分钟前
勤劳的冰菱完成签到,获得积分10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
爆米花应助百里幻竹采纳,获得10
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
百里幻竹发布了新的文献求助10
2分钟前
优雅夕阳完成签到 ,获得积分10
3分钟前
sssnesstudy完成签到 ,获得积分10
3分钟前
生姜批发刘哥完成签到 ,获得积分10
3分钟前
Hayat发布了新的文献求助10
3分钟前
归尘发布了新的文献求助10
3分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
归尘发布了新的文献求助10
4分钟前
Jasper应助自信迎天采纳,获得10
4分钟前
Ephemeral完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460082
求助须知:如何正确求助?哪些是违规求助? 3054374
关于积分的说明 9041848
捐赠科研通 2743741
什么是DOI,文献DOI怎么找? 1505182
科研通“疑难数据库(出版商)”最低求助积分说明 695609
邀请新用户注册赠送积分活动 694864