RL-Ripper:

计算机科学 强化学习 启发式 布线(电子设计自动化) 启发式 分布式计算 人工智能 计算机网络 操作系统
作者
Upma Gandhi,Erfan Aghaeekiasaraee,Ismail Bustany,Payam Mousavi,Matthew E. Taylor,Laleh Behjat
标识
DOI:10.1145/3583781.3590312
摘要

Physical designers have been using heuristics to solve challenging problems in routing. However, these heuristic solutions are not adaptable to the ever-changing fabrication demands and their effectiveness is limited by the experience and creativity of the designer. Reinforcement learning is an effective method to tackle sequential optimization problems due to its ability to adapt and learn through trial and error, creating policies that can handle complex tasks. This study presents an RL framework for global routing that incorporates a self-learning model called RL-Ripper. The primary function of RL-Ripper is to identify the best nets to rip to decrease the number of total short violations. In this work, the final global routing results are evaluated against CUGR, a state-of-the-art global router, using the ISPD 2018 benchmarks. The proposed RL-Ripper framework's approach can reduce the short violations compared to CUGR. Moreover, the RL-Ripper reduced the total number of short violations after the first iteration of detailed routing over the baseline while being on par with the wirelength, VIA, and runtime. The major impact of the proposed framework is to provide a novel learning-based approach to global routing that can be replicated for newer technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kryptonite完成签到 ,获得积分10
1秒前
1秒前
群木成林完成签到,获得积分10
2秒前
2秒前
4秒前
lin发布了新的文献求助10
5秒前
雅雅完成签到,获得积分10
5秒前
6秒前
只剩下55完成签到,获得积分10
7秒前
7秒前
8秒前
李某发布了新的文献求助10
9秒前
11秒前
yemuan完成签到,获得积分10
12秒前
yzWang发布了新的文献求助10
13秒前
14秒前
15秒前
17秒前
17秒前
TQ完成签到,获得积分10
18秒前
雪糕考研发布了新的文献求助20
18秒前
屠夫9441完成签到 ,获得积分10
20秒前
英吉利25发布了新的文献求助10
20秒前
21秒前
22秒前
carrier_hc发布了新的文献求助50
23秒前
flasher22发布了新的文献求助10
24秒前
漪涙完成签到,获得积分10
24秒前
25秒前
葱姜蒜留下了新的社区评论
25秒前
27秒前
豌豆发布了新的文献求助10
27秒前
荣艺完成签到,获得积分10
28秒前
耶的猫发布了新的文献求助10
28秒前
30秒前
dudu发布了新的文献求助10
31秒前
ccm发布了新的文献求助20
32秒前
33秒前
亚当完成签到 ,获得积分10
33秒前
木木完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547