Mix3D data augmentation enhanced RandLA-Net for large-scale point cloud semantic segmentation

过度拟合 计算机科学 点云 分割 推论 背景(考古学) 机器学习 集合(抽象数据类型) 人工智能 数据挖掘 人工神经网络 生物 古生物学 程序设计语言
作者
Junfeng Ding,Shisheng Guo,Mingyuan Li,Jian Zhou,Xuan Chen,Lei Chen
标识
DOI:10.1117/12.2675112
摘要

3D point cloud semantic segmentation is one of the key technologies for fast 3D modeling of digital twins. To address the overfitting problem of the large-scale semantic segmentation model RandLA-Net, this paper proposes an improved RandLA-Net method based on Mix3D data augmentation. RandLA-Net is a high-volume, large-perception field model that can directly capture the contextual information of the entire 3D scene, while 3D datasets tend to be more expensive due to data sampling and labeling, often the number of scenes is small and the variance within the data is small, RandLA-Net can easily learn the overly strong contextual prior on the training set, and the model may show poor generalization ability when reasoning in realistic scenes. By introducing Mix3D to mix the two scenes to generate new training samples and implicitly place the object instances in the new contextual environment, the RandLA-Net model no longer relies solely on the scene context to infer semantic labels, but instead infer from the local structure, balancing the role of global context and local structure information in model inference and effectively reducing the overfitting of the training set context. The overfitting of the training set context is effectively reduced. Experimental results on several datasets show that our approach results in a 1.3% and 0.6% mIoU improvement of the RandLA-Net model on Semantic3D and S3DIS datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AoAoo完成签到,获得积分10
刚刚
刚刚
洛泱完成签到,获得积分10
1秒前
1秒前
2秒前
Jiang发布了新的文献求助10
3秒前
4秒前
4秒前
六月发布了新的文献求助10
6秒前
明理的踏歌完成签到,获得积分10
6秒前
6秒前
6秒前
月半战戈发布了新的文献求助10
7秒前
iyuyu发布了新的文献求助30
8秒前
豆豆眼完成签到,获得积分20
9秒前
老赵是真的帅完成签到,获得积分10
10秒前
11秒前
vv关闭了vv文献求助
11秒前
11秒前
12秒前
打打应助霸气鹏飞采纳,获得10
12秒前
Irene_Y完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
友好绿柏发布了新的文献求助10
17秒前
seven完成签到,获得积分10
18秒前
XXXX完成签到 ,获得积分10
18秒前
所所应助现代的颦采纳,获得10
19秒前
脑洞疼应助ljf采纳,获得10
19秒前
GHX完成签到 ,获得积分10
19秒前
大力出奇迹完成签到,获得积分10
20秒前
科研通AI6.1应助乌龟娟采纳,获得10
20秒前
李子愚完成签到,获得积分10
20秒前
21秒前
22秒前
慕青应助mimimi采纳,获得10
22秒前
Whc完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793595
求助须知:如何正确求助?哪些是违规求助? 5750649
关于积分的说明 15486388
捐赠科研通 4920552
什么是DOI,文献DOI怎么找? 2648996
邀请新用户注册赠送积分活动 1596327
关于科研通互助平台的介绍 1550885