Observationally Constrained Modeling of Peroxy Radical During an Ozone Episode in the Pearl River Delta Region, China

乙二醛 臭氧 激进的 环境化学 箱形模型 化学 硝酸盐 氮氧化物 气溶胶 亚硝酸 三角洲 污染物 二氧化氮 羟基自由基 环境科学 大气科学 燃烧 有机化学 航空航天工程 工程类 地质学
作者
Jun Wang,Yanli Zhang,Weixiong Zhao,Zhenfeng Wu,Shilu Luo,Huina Zhang,Hongjun Zhou,Wei Song,Weijun Zhang,Xinming Wang
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:128 (12) 被引量:1
标识
DOI:10.1029/2022jd038279
摘要

Abstract Peroxy radicals (RO 2 * = HO 2 + RO 2 ) play key roles in forming secondary air pollutants such as ozone, yet model underprediction of RO 2 * is a challenging radical closure problem. In this study, RO 2 * were measured by a dual‐channel peroxy radical chemical amplification system during an ozone episode in October 2018 at an urban site in the Pearl River Delta region, China. The box model based on the Master Chemical Mechanism severely underpredicted RO 2 * levels, particularly at night and under high nitric oxide (NO) conditions. The observed‐to‐modeled ratio of RO 2 * increased from ∼3 under 1 ppbv NO to ∼46 under >10 ppbv NO with a missing RO 2 * source up to 5.8 ppbv hr −1 . Observation data were used to constrain model predictions, and the results reveal that constraining nitrous acid (HONO) or glyoxal/methylglyoxal could not improve predictions, while constraining nitrate radicals (NO 3 ) or other oxygenated volatile organic compounds (OVOCs), particularly phenolic compounds and improvements in their gas‐phase mechanisms, could more effectively increase model‐simulated RO 2 * concentrations. When OVOCs, NO 3 , and HONO were constrained, the simulated RO 2 * concentrations increased to the greatest extent with an observed‐to‐modeled RO 2 * ratio of 1.9 during the day and 1.3 at night, mainly due to the interaction between OVOCs and NO 3 radicals. As the underestimated NO 3 levels and the unmeasured reactive organic gases, as well as their unknown oxidation mechanisms, are among the major reasons for the underestimation of RO 2 *, upgraded atmospheric chemistry involving more OVOC species and more accurate NO 3 would improve model‐simulated RO 2 * concentrations, especially during nighttime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助ZhijunXiang采纳,获得10
1秒前
1秒前
午夜煎饼完成签到,获得积分10
1秒前
橙啦完成签到 ,获得积分10
2秒前
hsa_ID完成签到,获得积分20
3秒前
健壮的紫夏完成签到,获得积分10
4秒前
4秒前
浅蓝发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
hikari发布了新的文献求助10
5秒前
6秒前
6秒前
NN应助了大憨采纳,获得10
6秒前
xml完成签到,获得积分20
7秒前
等月光完成签到,获得积分10
8秒前
执着的小熊猫完成签到 ,获得积分10
8秒前
CipherSage应助yan采纳,获得10
8秒前
lululull发布了新的文献求助10
9秒前
9秒前
xml发布了新的文献求助10
10秒前
wjx发布了新的文献求助10
10秒前
hikari发布了新的文献求助10
11秒前
拉长的湘完成签到,获得积分10
13秒前
sennialiu完成签到,获得积分10
13秒前
13秒前
于冬雪发布了新的文献求助20
14秒前
科研通AI2S应助xiha西希采纳,获得10
14秒前
追剧狂魔发布了新的文献求助10
14秒前
14秒前
万能图书馆应助xml采纳,获得10
15秒前
阿C完成签到,获得积分10
16秒前
百宝发布了新的文献求助20
17秒前
桐桐应助鲨鱼采纳,获得10
17秒前
17秒前
17秒前
科研通AI6应助123456采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259600
求助须知:如何正确求助?哪些是违规求助? 4421190
关于积分的说明 13762060
捐赠科研通 4295031
什么是DOI,文献DOI怎么找? 2356695
邀请新用户注册赠送积分活动 1353099
关于科研通互助平台的介绍 1314206