选择性
化学
催化作用
吸附
振动
化学工程
工作职能
电子转移
电场
纳米技术
材料科学
物理化学
有机化学
物理
工程类
量子力学
图层(电子)
作者
Wenrou Tian,Najun Li,Dongyun Chen,Qingfeng Xu,Hua Li,Chenglin Yan,Jianmei Lu
标识
DOI:10.1002/anie.202306964
摘要
Converting CO2 into high-value C2 chemicals such as acetate with high selectivity and efficiency is a critical issue in renewable energy storage. Herein, for the first time we present a vibration-driven piezocatalysis with tin(II) monosulfide (SnS) nanobelts for conversion of CO2 to acetate with 100 % selectivity, and the highest production rate (2.21 mM h-1 ) compared with reported catalysts. Mechanism analysis reveal that the polarized charges triggered by periodic mechanical vibration promote the adsorption and activation of CO2 . The electron transfer can be facilitated due to built-in electric field, decreased band gap and work function of SnS under stress. Remarkably, reduced distance between active sites leads to charge enrichment on Sn sites, promoting the C-C coupling, reducing the energy barriers of the rate determining step. It puts forward a bran-new strategy for converting CO2 into high-value C2 products with efficient, low-cost and environment-friendly piezocatalysis utilizing mechanical energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI