电介质
材料科学
偶极子
空间电荷
凝聚态物理
铁电性
电解质
化学物理
光电子学
物理化学
电极
电子
化学
有机化学
物理
量子力学
作者
Bo Keun Park,Hyeongil Kim,Kyung Su Kim,Hyun‐Seung Kim,Seung Ho Han,Ji‐Sang Yu,Hoe Jin Hah,Janghyuk Moon,Woosuk Cho,Ki Jae Kim
标识
DOI:10.1002/aenm.202201208
摘要
Abstract Introducing dielectric materials is a promising approach to mitigate space‐charge‐layer (SCL) formation, which negatively affects the electrochemical performance of sulfide‐based all‐solid‐state batteries (ASSBs). Most previous studies have focused on mitigating SCL formation by introducing dielectric materials, overlooking the fact that significant dielectric properties such as the dipole moment direction and the magnitude of the dielectric constant can influence SCL formation. To clarify the unclear mechanism of dielectric materials mitigating SCL formation, paraelectricity, ferroelectricity, and the magnitude of the dielectric constant are investigated to determine their effect on SCL formation. Paraelectric materials possessing no permanent dipole moment can effectively mitigate the SCL formation better than ferroelectric material with strong permanent dipole moment because of the intrinsic characteristics of the paraelectric material, in which the dipole moment can be aligned along the direction of the electric field applied inside of ASSB. Furthermore, paraelectric materials with a larger dielectric constant have a greater effect in mitigating SCL effect than paraelectric materials with a smaller dielectric constant. Thus, these properties should be considered in cathode‐solid‐electrolyte interface design. This study considers relevant dielectric material characteristics that had not been considered previously, suggesting a new paradigm for optimizing the interfacial resistance of sulfide‐based ASSBs originating from SCL formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI