Efficient Query-based Black-box Attack against Cross-modal Hashing Retrieval

计算机科学 对抗制 散列函数 黑匣子 稳健性(进化) 情态动词 人工智能 理论计算机科学 计算机安全 生物化学 基因 化学 高分子化学
作者
Lei Zhu,Tianshi Wang,Jingjing Li,Zheng Zhang,Jialie Shen,Xinhua Wang
出处
期刊:ACM Transactions on Information Systems 卷期号:41 (3): 1-25 被引量:14
标识
DOI:10.1145/3559758
摘要

Deep cross-modal hashing retrieval models inherit the vulnerability of deep neural networks. They are vulnerable to adversarial attacks, especially for the form of subtle perturbations to the inputs. Although many adversarial attack methods have been proposed to handle the robustness of hashing retrieval models, they still suffer from two problems: (1) Most of them are based on the white-box settings, which is usually unrealistic in practical application. (2) Iterative optimization for the generation of adversarial examples in them results in heavy computation. To address these problems, we propose an Efficient Query-based Black-Box Attack (EQB 2 A) against deep cross-modal hashing retrieval, which can efficiently generate adversarial examples for the black-box attack. Specifically, by sending a few query requests to the attacked retrieval system, the cross-modal retrieval model stealing is performed based on the neighbor relationship between the retrieved results and the query, thus obtaining the knockoffs to substitute the attacked system. A multi-modal knockoffs-driven adversarial generation is proposed to achieve efficient adversarial example generation. While the entire network training converges, EQB 2 A can efficiently generate adversarial examples by forward-propagation with only given benign images. Experiments show that EQB 2 A achieves superior attacking performance under the black-box setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雷发布了新的文献求助10
刚刚
甜蜜秋蝶发布了新的文献求助10
刚刚
ysl发布了新的文献求助30
刚刚
yyy完成签到,获得积分10
刚刚
刚刚
自信的伊发布了新的文献求助10
1秒前
Stanley发布了新的文献求助10
1秒前
wang发布了新的文献求助10
1秒前
1秒前
大鹏发布了新的文献求助50
1秒前
丘比特应助艺玲采纳,获得10
1秒前
hobowei发布了新的文献求助10
2秒前
梦里见陈情完成签到,获得积分10
2秒前
JJJ应助szh123采纳,获得10
2秒前
FFFFFFF应助细腻沅采纳,获得10
2秒前
ym发布了新的文献求助10
2秒前
Yn完成签到 ,获得积分10
3秒前
3秒前
秋季完成签到,获得积分10
4秒前
wwb完成签到,获得积分10
4秒前
张自信完成签到,获得积分10
5秒前
华仔应助VDC采纳,获得10
5秒前
嘟嘟完成签到,获得积分10
6秒前
卡卡完成签到,获得积分10
6秒前
6秒前
十三发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
甩看文献发布了新的文献求助10
7秒前
wang完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
LONG完成签到,获得积分10
9秒前
9秒前
甜蜜秋蝶完成签到,获得积分10
9秒前
10秒前
TT发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762