Efficient Query-based Black-box Attack against Cross-modal Hashing Retrieval

计算机科学 对抗制 散列函数 黑匣子 稳健性(进化) 情态动词 人工智能 理论计算机科学 计算机安全 生物化学 基因 化学 高分子化学
作者
Lei Zhu,Tianshi Wang,Jingjing Li,Zheng Zhang,Jialie Shen,Xinhua Wang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (3): 1-25 被引量:14
标识
DOI:10.1145/3559758
摘要

Deep cross-modal hashing retrieval models inherit the vulnerability of deep neural networks. They are vulnerable to adversarial attacks, especially for the form of subtle perturbations to the inputs. Although many adversarial attack methods have been proposed to handle the robustness of hashing retrieval models, they still suffer from two problems: (1) Most of them are based on the white-box settings, which is usually unrealistic in practical application. (2) Iterative optimization for the generation of adversarial examples in them results in heavy computation. To address these problems, we propose an Efficient Query-based Black-Box Attack (EQB 2 A) against deep cross-modal hashing retrieval, which can efficiently generate adversarial examples for the black-box attack. Specifically, by sending a few query requests to the attacked retrieval system, the cross-modal retrieval model stealing is performed based on the neighbor relationship between the retrieved results and the query, thus obtaining the knockoffs to substitute the attacked system. A multi-modal knockoffs-driven adversarial generation is proposed to achieve efficient adversarial example generation. While the entire network training converges, EQB 2 A can efficiently generate adversarial examples by forward-propagation with only given benign images. Experiments show that EQB 2 A achieves superior attacking performance under the black-box setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏柯完成签到,获得积分10
刚刚
刚刚
XX完成签到,获得积分10
刚刚
刚刚
bkagyin应助满意语芙采纳,获得10
刚刚
黑猫乾杯应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得30
1秒前
Mic应助科研通管家采纳,获得10
1秒前
做科研的小施同学完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得30
1秒前
小巧亦竹发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
小单发布了新的文献求助50
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
1秒前
妩媚的海应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
星月应助科研通管家采纳,获得20
1秒前
黑猫乾杯应助科研通管家采纳,获得10
2秒前
科研通AI6应助Magic1987采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
王丽娟应助科研通管家采纳,获得10
2秒前
2秒前
Mic应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901