Targeted degradation of microtubule-associated protein tau using an engineered nanobody-E3 ubiquitin ligase adapter fusion

核定位序列 泛素连接酶 NLS公司 泛素 核运输 细胞生物学 蛋白质降解 融合蛋白 核出口信号 信号转导衔接蛋白 核蛋白 蛋白酶体 生物 好斗的 化学 细胞核 细胞质 生物化学 信号转导 转录因子 基因 重组DNA
作者
Shiyao Wang,Shaowei Jiang,Guoan Zheng,Yong Ku Cho
标识
DOI:10.1101/2022.09.01.506229
摘要

Abstract Reducing the level of microtubule-associated protein tau has recently emerged as a promising therapeutic approach for a range of neurodegenerative diseases. Among the various approaches, targeted protein degradation provides a reversible means to rapidly reduce and specifically target disease-relevant forms of tau. However, in aging cells, the protein turnover activity is generally weakened, reducing the efficacy of protein degradation. A potential solution to this is to harness the nuclear proteasomal activity. The nucleus has a high proteasomal content and the degradation activity remains relatively unaffected even in aged cells. Here we show that an E3 ligase F-box domain from the nuclear protein human speckle type BTB/POZ protein (SPOP) is effective in degrading the microtubule-associated protein tau in primary mouse hippocampal neurons. Using EGFP-tagged tau and a GFP-binding nanobody fused to SPOP, we found that the native nuclear localization signal in SPOP causes nuclear sequestration of the target protein. However, degradation of the sequestered target proteins is incomplete, resulting in nuclear accumulation. Replacing the native SPOP nuclear localization signal (NLS) with variants having altered nuclear localization efficiency dramatically affects in the degree of nuclear accumulation of the target protein. Interestingly, nanobody-SPOP with no NLS was more efficient than that with a NLS in reducing overall tau level, causing an approximately 50% reduction in ectopically expressed human tau in mouse neurons. These results show the potential for harnessing the nuclear proteasomal activity for targeted tau degradation in cells and demonstrate a new modality of regulating intracellular protein degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lf-leo发布了新的文献求助10
1秒前
顾矜应助明亮的一瓶采纳,获得10
1秒前
yyy发布了新的文献求助10
3秒前
上官若男应助fjm采纳,获得10
4秒前
hata233完成签到,获得积分10
5秒前
李健的小迷弟应助小小米采纳,获得10
6秒前
何何何何完成签到 ,获得积分10
8秒前
8秒前
畅快莫茗发布了新的文献求助10
9秒前
12秒前
12秒前
13秒前
14秒前
yhr发布了新的文献求助10
15秒前
内向书雁给内向书雁的求助进行了留言
16秒前
爱大美发布了新的文献求助10
16秒前
Gorry完成签到,获得积分10
16秒前
醒醒好困完成签到,获得积分20
17秒前
不懂哇完成签到,获得积分10
17秒前
17秒前
17秒前
科研通AI2S应助oceanic采纳,获得10
17秒前
han发布了新的文献求助10
18秒前
asdfqwer发布了新的文献求助10
18秒前
18秒前
19秒前
For发布了新的文献求助10
19秒前
19秒前
YoungZ完成签到,获得积分10
19秒前
19秒前
Orange应助DZ采纳,获得10
19秒前
风趣的芙发布了新的文献求助10
20秒前
大模型应助高高的凡之采纳,获得10
21秒前
好了没了发布了新的文献求助10
21秒前
万能图书馆应助白思晗采纳,获得10
22秒前
打我呀发布了新的文献求助10
23秒前
研唐发布了新的文献求助10
24秒前
科研通AI2S应助高挑的不凡采纳,获得10
27秒前
华仔应助爱大美采纳,获得10
27秒前
axiao完成签到,获得积分10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248