多孔介质
社会联系
渗透(认知心理学)
统计物理学
各向异性
度量(数据仓库)
极限(数学)
比例(比率)
特征向量
渗流理论
物理
数学
多孔性
地质学
数学分析
计算机科学
岩土工程
光学
电导率
量子力学
心理学
数据库
神经科学
心理治疗师
生物
作者
R. Hilfer,J. Hauskrecht
标识
DOI:10.1007/s11242-021-01735-7
摘要
Abstract Connectivity and connectedness are nonadditive geometric functionals on the set of pore scale structures. They determine transport of mass, volume or momentum in porous media, because without connectivity there cannot be transport. Percolativity of porous media is introduced here as a geometric descriptor of connectivity, that can be computed from the pore scale and persists to the macroscale through a suitable upscaling limit. It is a measure that combines local percolation probabilities with a probability density of ratios of eigenvalues of the tensor of local percolating directions. Percolativity enters directly into generalized effective medium approximations. Predictions from these generalized effective medium approximations are found to be compatible with apparently anisotropic Archie correlations observed in experiment.
科研通智能强力驱动
Strongly Powered by AbleSci AI