Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jialing完成签到 ,获得积分10
刚刚
故意的静芙完成签到,获得积分20
刚刚
刚刚
1秒前
陈文文完成签到 ,获得积分10
1秒前
鳗鱼纸飞机完成签到,获得积分10
1秒前
铁铁完成签到,获得积分10
1秒前
情怀应助111采纳,获得10
2秒前
yana完成签到,获得积分10
2秒前
Umar完成签到,获得积分10
2秒前
传奇3应助YBOH采纳,获得10
3秒前
Sli完成签到,获得积分10
3秒前
3秒前
小马完成签到 ,获得积分10
3秒前
含蓄朝雪完成签到,获得积分10
5秒前
脑洞疼应助JING采纳,获得10
5秒前
wanli445完成签到,获得积分10
6秒前
6秒前
南海神尼完成签到,获得积分10
6秒前
7秒前
欢乐城完成签到,获得积分10
7秒前
7秒前
Clown发布了新的文献求助10
8秒前
GLORIA完成签到 ,获得积分10
8秒前
8秒前
芳芳子呀完成签到,获得积分10
8秒前
牛牛发布了新的文献求助10
9秒前
昨夜書发布了新的文献求助10
10秒前
111完成签到,获得积分10
10秒前
sx关闭了sx文献求助
10秒前
整齐芷文完成签到,获得积分10
11秒前
yellow完成签到,获得积分10
11秒前
小王完成签到 ,获得积分10
12秒前
jiying131发布了新的文献求助10
12秒前
luogan完成签到,获得积分10
12秒前
12秒前
何佳完成签到,获得积分10
13秒前
L1完成签到 ,获得积分10
14秒前
科研通AI5应助毛毛采纳,获得10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650