Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kirito应助科研通管家采纳,获得200
刚刚
Mine_cherry应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
蓝天应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得20
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Mine_cherry应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
wenhui完成签到 ,获得积分10
1秒前
1秒前
哭泣的犀牛完成签到,获得积分20
1秒前
陈泉完成签到,获得积分10
2秒前
英俊的铭应助六六采纳,获得10
2秒前
family发布了新的文献求助10
2秒前
懦弱的曲奇完成签到 ,获得积分10
4秒前
魔幻的摩托完成签到 ,获得积分10
4秒前
仁爱小凝完成签到,获得积分20
4秒前
帅b完成签到,获得积分10
5秒前
王杰发布了新的文献求助30
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
8秒前
中和皇极应助仁爱小凝采纳,获得10
8秒前
圆圆发布了新的文献求助10
9秒前
情怀应助123lx采纳,获得10
9秒前
顾矜应助惜灵采纳,获得10
9秒前
和谐雪曼发布了新的文献求助10
10秒前
CiCi完成签到 ,获得积分10
11秒前
帅b发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672