Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYX完成签到,获得积分10
2秒前
3秒前
鱼梓发布了新的文献求助10
4秒前
ZYC007完成签到,获得积分10
4秒前
狗东西完成签到,获得积分10
7秒前
susu完成签到,获得积分10
7秒前
TT完成签到,获得积分10
8秒前
federish完成签到 ,获得积分10
8秒前
Jasper应助阿明采纳,获得10
8秒前
222完成签到,获得积分10
9秒前
9秒前
狗东西发布了新的文献求助100
10秒前
宋小雅完成签到,获得积分10
11秒前
Linda完成签到 ,获得积分10
11秒前
soda饼干完成签到 ,获得积分10
11秒前
哇哈哈哈完成签到,获得积分10
13秒前
赛力给赛力的求助进行了留言
14秒前
无花果应助务实的思菱采纳,获得10
14秒前
14秒前
14秒前
ping完成签到,获得积分10
15秒前
猕猴桃刘完成签到 ,获得积分10
16秒前
liugm发布了新的文献求助10
16秒前
华仔应助兴奋落雁采纳,获得10
17秒前
18秒前
18秒前
田様应助夏夏加油搞科研采纳,获得10
20秒前
小二郎应助dyuguo3采纳,获得10
20秒前
Bai完成签到,获得积分10
20秒前
MrChew完成签到 ,获得积分10
20秒前
21秒前
ren发布了新的文献求助10
23秒前
89发布了新的文献求助10
23秒前
24秒前
瓜瓜发布了新的文献求助10
25秒前
蛙蛙大王应助狗东西采纳,获得10
25秒前
悦耳映真完成签到,获得积分10
26秒前
从笙完成签到,获得积分10
26秒前
MchemG应助Zy采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305347
求助须知:如何正确求助?哪些是违规求助? 4451536
关于积分的说明 13852225
捐赠科研通 4338937
什么是DOI,文献DOI怎么找? 2382253
邀请新用户注册赠送积分活动 1377338
关于科研通互助平台的介绍 1344780