Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的钢笔完成签到,获得积分10
刚刚
风卷残云发布了新的文献求助10
1秒前
研友_Lwb9X8完成签到,获得积分10
1秒前
linghanlan完成签到,获得积分10
1秒前
彭于晏应助Lolo采纳,获得50
1秒前
2秒前
2秒前
2秒前
其醉完成签到,获得积分10
3秒前
咸鸭蛋完成签到 ,获得积分10
3秒前
JIN发布了新的文献求助10
3秒前
无花果应助Evander采纳,获得10
3秒前
赘婿应助Sword采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
ziptip发布了新的文献求助10
4秒前
5秒前
Bowen完成签到,获得积分10
5秒前
6秒前
6秒前
慕青应助魄魄olm采纳,获得10
6秒前
木木发布了新的文献求助10
7秒前
科研通AI6应助天才玩家H采纳,获得20
7秒前
Uu发布了新的文献求助10
7秒前
科研通AI6应助未雨采纳,获得10
7秒前
今后应助wuyy采纳,获得10
9秒前
10秒前
10秒前
10秒前
于跃发布了新的文献求助10
11秒前
Xx完成签到 ,获得积分10
11秒前
歪比巴卜发布了新的文献求助20
11秒前
12秒前
WA完成签到,获得积分10
12秒前
12秒前
12秒前
念梦发布了新的文献求助10
12秒前
13秒前
隐形曼青应助一颗小花生采纳,获得10
14秒前
濯枝雨完成签到,获得积分10
14秒前
artoria完成签到,获得积分10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553