Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助lalallaal采纳,获得10
1秒前
wingmay发布了新的文献求助10
2秒前
斯文败类应助wkjfh采纳,获得10
2秒前
orixero应助乐观寻雪采纳,获得10
2秒前
华仔应助阳光的笑卉采纳,获得10
2秒前
2秒前
Hello应助陈chq采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
YueCheng8899完成签到,获得积分20
3秒前
唠嗑在呐完成签到,获得积分10
3秒前
温暖的炒饭完成签到,获得积分10
4秒前
4秒前
粟米完成签到,获得积分10
4秒前
fengmian发布了新的文献求助10
4秒前
Akim应助疯狂的觅翠采纳,获得10
4秒前
4秒前
大龙哥886应助任性凝蝶采纳,获得10
5秒前
wanci应助认真的博采纳,获得10
5秒前
5秒前
5秒前
汉堡包应助唠嗑在呐采纳,获得10
5秒前
JamesPei应助忧心的书文采纳,获得10
6秒前
领导范儿应助忧心的书文采纳,获得10
6秒前
领导范儿应助忧心的书文采纳,获得10
6秒前
小蘑菇应助忧心的书文采纳,获得10
6秒前
所所应助夕荀采纳,获得10
6秒前
6秒前
Www完成签到 ,获得积分10
6秒前
英俊的铭应助忧心的书文采纳,获得10
6秒前
6秒前
丘比特应助忧心的书文采纳,获得200
6秒前
半夜的拼图完成签到,获得积分10
6秒前
经又夏发布了新的文献求助10
6秒前
佩琪小姨发布了新的文献求助10
7秒前
李健的粉丝团团长应助znn采纳,获得10
8秒前
8秒前
8秒前
yiyi发布了新的文献求助10
9秒前
进_发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764