Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助LXL采纳,获得10
刚刚
1秒前
2秒前
3秒前
深情安青应助cccc采纳,获得10
3秒前
3秒前
细心擎呢发布了新的文献求助10
4秒前
5秒前
小彭仔完成签到,获得积分10
5秒前
罗咩咩发布了新的文献求助10
7秒前
丘比特应助ninomi采纳,获得10
7秒前
7秒前
蓝天应助聪慧的醉波采纳,获得10
7秒前
8秒前
彭于晏应助霸气的柠檬采纳,获得10
9秒前
大模型应助吴龙采纳,获得10
9秒前
茶米发布了新的文献求助10
10秒前
10秒前
单薄的西装完成签到,获得积分10
11秒前
NexusExplorer应助Wjp采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
shadow完成签到,获得积分10
12秒前
balalal发布了新的文献求助10
12秒前
CodeCraft应助sghsh采纳,获得10
13秒前
CodeCraft应助zd200572采纳,获得10
13秒前
Hello应助Dylan采纳,获得10
13秒前
珊明治完成签到,获得积分10
14秒前
15秒前
ak24765完成签到,获得积分10
15秒前
Lucas应助帝释天I采纳,获得10
16秒前
Linden发布了新的文献求助10
16秒前
17秒前
传奇3应助ling22采纳,获得10
17秒前
风衣拖地完成签到 ,获得积分10
17秒前
冰红粥完成签到,获得积分10
17秒前
17秒前
852应助曾经山柏采纳,获得10
18秒前
可爱的函函应助杜晓倩采纳,获得10
18秒前
所所应助黎其采纳,获得10
18秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133