Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

偏最小二乘回归 高光谱成像 预处理器 计算机科学 人工智能 学习迁移 转化(遗传学) 数据预处理 支持向量机 模式识别(心理学) 深度学习 卷积神经网络 生物系统 数学 机器学习 化学 生物 基因 生物化学
作者
Qinlin Xiao,Wentan Tang,Chu Zhang,Lei Zhou,Lei Feng,Jianxun Shen,Tianying Yan,Pan Gao,Yong He,Na Wu
出处
期刊:Plant phenomics [AAAS00]
卷期号:2022 被引量:37
标识
DOI:10.34133/2022/9813841
摘要

Rapid determination of chlorophyll content is significant for evaluating cotton's nutritional and physiological status. Hyperspectral technology equipped with multivariate analysis methods has been widely used for chlorophyll content detection. However, the model developed on one batch or variety cannot produce the same effect for another due to variations, such as samples and measurement conditions. Considering that it is costly to establish models for each batch or variety, the feasibility of using spectral preprocessing combined with deep transfer learning for model transfer was explored. Seven different spectral preprocessing methods were discussed, and a self-designed convolutional neural network (CNN) was developed to build models and conduct transfer tasks by fine-tuning. The approach combined first-derivative (FD) and standard normal variate transformation (SNV) was chosen as the best pretreatment. For the dataset of the target domain, fine-tuned CNN based on spectra processed by FD + SNV outperformed conventional partial least squares (PLS) and squares-support vector machine regression (SVR). Although the performance of fine-tuned CNN with a smaller dataset was slightly lower, it was still better than conventional models and achieved satisfactory results. Ensemble preprocessing combined with deep transfer learning could be an effective approach to estimate the chlorophyll content between different cotton varieties, offering a new possibility for evaluating the nutritional status of cotton in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助sifLiu采纳,获得30
刚刚
能干的初瑶完成签到,获得积分10
刚刚
tangtang发布了新的文献求助10
1秒前
1秒前
我是老大应助旺旺采纳,获得10
1秒前
柿子完成签到 ,获得积分10
1秒前
1秒前
engine完成签到,获得积分10
1秒前
调皮的大炮完成签到 ,获得积分10
1秒前
2秒前
2秒前
Hong完成签到 ,获得积分10
2秒前
儒雅非笑发布了新的文献求助10
2秒前
甜菜完成签到,获得积分10
2秒前
3秒前
小巧的平露完成签到,获得积分20
3秒前
思源应助快乐的访烟采纳,获得10
3秒前
Orange应助噜噜大王采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
qing完成签到,获得积分20
4秒前
尊敬怀薇完成签到,获得积分10
5秒前
5秒前
黄瓜仔发布了新的文献求助10
6秒前
6秒前
gy发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
JOYO欣完成签到,获得积分10
8秒前
YYY发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
爆米花应助ZIYU采纳,获得10
9秒前
ss发布了新的文献求助10
9秒前
dique3hao发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444