Small molecule photocatalysis enables drug target identification via energy transfer

小分子 药物发现 计算生物学 化学 组合化学 纳米技术 生物
作者
Aaron D. Trowbridge,Ciaran P. Seath,Frances P. Rodriguez-Rivera,Beryl X. Li,Barbara E. Dul,Adam G. Schwaid,Benito F. Buksh,Jacob B. Geri,James V. Oakley,Olugbeminiyi O. Fadeyi,Rob C. Oslund,Keun Ah Ryu,Cory White,Tamara Reyes-Robles,Paul Tawa,Dann L. Parker,David W. C. MacMillan
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (34)
标识
DOI:10.1073/pnas.2208077119
摘要

Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors—ADORA2A and GPR40.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_LkD29n完成签到 ,获得积分10
3秒前
皮皮发布了新的文献求助30
3秒前
乍见发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
啦啦啦发布了新的文献求助10
9秒前
一只虎子完成签到,获得积分10
9秒前
深情安青应助大胆的盼山采纳,获得10
9秒前
云_123发布了新的文献求助10
10秒前
bkagyin应助DianaRang采纳,获得30
11秒前
12秒前
一二发布了新的文献求助10
12秒前
12秒前
李健应助zls采纳,获得10
13秒前
SHENG完成签到,获得积分10
13秒前
13秒前
无奈安筠完成签到 ,获得积分10
14秒前
16秒前
务实小鸽子完成签到 ,获得积分10
17秒前
robi发布了新的文献求助10
17秒前
Felix发布了新的文献求助10
18秒前
sys完成签到,获得积分10
18秒前
123发布了新的文献求助10
18秒前
yaoyao完成签到 ,获得积分10
18秒前
研友_850EYZ发布了新的文献求助10
19秒前
贰鸟应助joanna0932采纳,获得20
19秒前
20秒前
20秒前
赘婿应助一二采纳,获得10
22秒前
wu完成签到,获得积分10
22秒前
NexusExplorer应助王爱灿采纳,获得10
22秒前
23秒前
23秒前
You关注了科研通微信公众号
27秒前
研究啥完成签到,获得积分10
29秒前
FashionBoy应助犹豫弘文采纳,获得10
29秒前
乍见完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825