已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 工程类 生物 结构工程 植物 生态学
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 119086-119086 被引量:72
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
王子努力搞科研完成签到 ,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
qiuqiu应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
pual应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
qiuqiu应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
RRReol发布了新的文献求助10
7秒前
shuhaha完成签到,获得积分10
8秒前
Willow完成签到,获得积分10
10秒前
霸气灵松完成签到 ,获得积分10
12秒前
12秒前
Bob发布了新的文献求助10
16秒前
qi完成签到 ,获得积分10
17秒前
19秒前
ymr完成签到 ,获得积分10
21秒前
怕黑的白玉完成签到 ,获得积分10
22秒前
在水一方应助邱乐乐采纳,获得10
22秒前
22秒前
22秒前
Ava应助Rafayel采纳,获得10
22秒前
浮游应助王佳俊采纳,获得10
22秒前
25秒前
zh完成签到,获得积分10
28秒前
爱听歌电灯胆完成签到 ,获得积分10
32秒前
sun完成签到 ,获得积分10
35秒前
王佳俊完成签到,获得积分10
38秒前
39秒前
孙泽一发布了新的文献求助10
42秒前
48秒前
CNC完成签到 ,获得积分10
50秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498024
求助须知:如何正确求助?哪些是违规求助? 4595410
关于积分的说明 14449038
捐赠科研通 4528074
什么是DOI,文献DOI怎么找? 2481355
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438271