已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 生态学 工程类 生物 结构工程 植物
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 119086-119086 被引量:32
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的秋白完成签到,获得积分10
刚刚
阿九发布了新的文献求助10
刚刚
李烛尘发布了新的文献求助10
1秒前
6秒前
9秒前
wuludie发布了新的文献求助10
9秒前
10秒前
11秒前
科目三应助Michelle采纳,获得10
12秒前
蟹治猿发布了新的文献求助10
13秒前
深情映冬完成签到,获得积分20
14秒前
14秒前
15秒前
15秒前
Glowing完成签到,获得积分10
15秒前
兰先生发布了新的文献求助30
16秒前
18秒前
善学以致用应助权归尘采纳,获得10
20秒前
21秒前
23秒前
乐乐应助DDQHB采纳,获得10
26秒前
自信萃发布了新的文献求助10
27秒前
29秒前
无花果应助豆腐kkkkk采纳,获得10
31秒前
脑洞疼应助热塑性哈士奇采纳,获得10
31秒前
英姑应助Anlix采纳,获得10
33秒前
权归尘发布了新的文献求助10
34秒前
34秒前
yuaner发布了新的文献求助10
37秒前
乐乐应助小xx采纳,获得10
39秒前
柯擎汉发布了新的文献求助10
39秒前
兰先生完成签到,获得积分20
40秒前
完美世界应助南知采纳,获得10
44秒前
星辰大海应助duang采纳,获得10
45秒前
45秒前
歌歌发布了新的文献求助30
46秒前
梁朝伟应助郜雨寒采纳,获得10
47秒前
无花果应助郜雨寒采纳,获得10
47秒前
华仔应助郜雨寒采纳,获得10
47秒前
852应助郜雨寒采纳,获得10
47秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171276
求助须知:如何正确求助?哪些是违规求助? 2822139
关于积分的说明 7938382
捐赠科研通 2482666
什么是DOI,文献DOI怎么找? 1322693
科研通“疑难数据库(出版商)”最低求助积分说明 633708
版权声明 602627