A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 工程类 生物 结构工程 植物 生态学
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 119086-119086 被引量:72
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曲曲完成签到,获得积分10
1秒前
1秒前
liufangrui完成签到,获得积分10
2秒前
2秒前
梨儿萌死完成签到,获得积分10
3秒前
李爱国应助Liana_Liu采纳,获得10
3秒前
danielsong发布了新的文献求助10
3秒前
无私的紫文完成签到,获得积分20
3秒前
4秒前
5秒前
5秒前
甜甜的冰淇淋完成签到,获得积分10
5秒前
5秒前
孙燕应助风清扬采纳,获得59
5秒前
zwj发布了新的文献求助10
6秒前
dyh关闭了dyh文献求助
7秒前
mmy完成签到,获得积分10
7秒前
Jerry完成签到 ,获得积分10
7秒前
zzx发布了新的文献求助10
7秒前
Ava应助酷酷问薇采纳,获得10
8秒前
1234发布了新的文献求助10
8秒前
rixinsu发布了新的文献求助10
9秒前
9秒前
9秒前
超帅的南珍完成签到,获得积分10
9秒前
9秒前
虚幻蹇完成签到,获得积分10
9秒前
冷傲的薯片完成签到 ,获得积分10
10秒前
Jasper应助karL采纳,获得10
10秒前
mirrovo发布了新的文献求助100
10秒前
10秒前
英姑应助无私的紫文采纳,获得10
10秒前
大个应助rixinsu采纳,获得10
13秒前
恣意发布了新的文献求助10
14秒前
14秒前
星辰大海应助失眠的寄翠采纳,获得10
14秒前
14秒前
wanci应助zzx采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618656
求助须知:如何正确求助?哪些是违规求助? 4703567
关于积分的说明 14922777
捐赠科研通 4758019
什么是DOI,文献DOI怎么找? 2550151
邀请新用户注册赠送积分活动 1512998
关于科研通互助平台的介绍 1474379