A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 生态学 工程类 生物 结构工程 植物
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 119086-119086 被引量:58
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南遇完成签到,获得积分10
1秒前
zzm完成签到,获得积分10
1秒前
慕青应助嗯嗯采纳,获得10
3秒前
汉堡包应助ken采纳,获得10
3秒前
小小脆脆鲨完成签到 ,获得积分10
3秒前
5秒前
shu完成签到,获得积分10
5秒前
5秒前
6秒前
nmamtf发布了新的文献求助10
6秒前
6秒前
堀江真夏完成签到 ,获得积分10
7秒前
恐怖稽器人完成签到,获得积分10
7秒前
咸蛋超人完成签到,获得积分10
8秒前
8秒前
zzm发布了新的文献求助10
9秒前
9秒前
嘎嘎发布了新的文献求助10
9秒前
wwl007完成签到,获得积分10
9秒前
浮云客完成签到,获得积分10
9秒前
10秒前
绿蜡完成签到,获得积分10
10秒前
小杜完成签到,获得积分10
10秒前
WJF发布了新的文献求助10
11秒前
咸蛋超人发布了新的文献求助10
11秒前
13秒前
13秒前
西乡塘塘主完成签到,获得积分10
15秒前
科研通AI5应助小畅采纳,获得10
16秒前
16秒前
诸岩完成签到,获得积分10
18秒前
美好海瑶发布了新的文献求助10
18秒前
WJF完成签到,获得积分10
18秒前
18秒前
19秒前
浮游应助奇奇采纳,获得10
19秒前
turky90发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121136
求助须知:如何正确求助?哪些是违规求助? 4326371
关于积分的说明 13479415
捐赠科研通 4160135
什么是DOI,文献DOI怎么找? 2279852
邀请新用户注册赠送积分活动 1281637
关于科研通互助平台的介绍 1220557