清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 工程类 生物 结构工程 植物 生态学
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 119086-119086 被引量:72
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwy发布了新的文献求助10
4秒前
神秘猎牛人应助乐观之瑶采纳,获得10
7秒前
冉亦完成签到,获得积分10
14秒前
星际舟完成签到,获得积分10
30秒前
38秒前
shhoing应助科研通管家采纳,获得10
51秒前
51秒前
Akim应助科研通管家采纳,获得10
51秒前
十七岁男高中生完成签到 ,获得积分10
1分钟前
Hazel完成签到,获得积分20
1分钟前
1分钟前
Hazel发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
zly完成签到 ,获得积分10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
神秘猎牛人应助daizao采纳,获得10
3分钟前
鲑鱼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
外星人发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助Kashing采纳,获得10
4分钟前
5分钟前
xwy完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
Kashing发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
Mine完成签到,获得积分10
6分钟前
香蕉觅云应助乐观之瑶采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538845
求助须知:如何正确求助?哪些是违规求助? 4625835
关于积分的说明 14596950
捐赠科研通 4566541
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856