A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 生态学 工程类 生物 结构工程 植物
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 119086-119086 被引量:58
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江峰发布了新的文献求助10
1秒前
kingwill应助Panjiao采纳,获得30
2秒前
Akim应助疯狂的沛岚采纳,获得10
2秒前
博修发布了新的文献求助10
2秒前
2秒前
当当发布了新的文献求助10
3秒前
4秒前
4秒前
xun应助背后丹妗采纳,获得30
4秒前
qh5706完成签到,获得积分10
5秒前
5秒前
柠檬完成签到 ,获得积分10
6秒前
情怀应助Cuisine采纳,获得10
6秒前
Owen应助江峰采纳,获得10
8秒前
LV发布了新的文献求助10
8秒前
loong发布了新的文献求助10
10秒前
冯冯发布了新的文献求助10
12秒前
研友_LBR9gL发布了新的文献求助10
12秒前
13秒前
英俊的铭应助boboko采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
LV完成签到,获得积分20
15秒前
xixi完成签到 ,获得积分10
16秒前
胖虎完成签到,获得积分10
16秒前
背后丹妗完成签到,获得积分10
17秒前
Catalina_S举报深情芷求助涉嫌违规
17秒前
17秒前
yzk发布了新的文献求助10
19秒前
勤劳影子发布了新的文献求助20
20秒前
21秒前
21秒前
阳光珍发布了新的文献求助10
23秒前
周全敏完成签到 ,获得积分10
25秒前
千千千千千千青完成签到,获得积分10
26秒前
Zero完成签到,获得积分10
26秒前
LiiuMx发布了新的文献求助30
27秒前
Yingzhe完成签到,获得积分10
28秒前
28秒前
雨寒完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586078
求助须知:如何正确求助?哪些是违规求助? 4002708
关于积分的说明 12390961
捐赠科研通 3678812
什么是DOI,文献DOI怎么找? 2027659
邀请新用户注册赠送积分活动 1061125
科研通“疑难数据库(出版商)”最低求助积分说明 947484