清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A machine learning-based approach for vital node identification in complex networks

计算机科学 节点(物理) 鉴定(生物学) 适应性 机器学习 支持向量机 人工智能 图形核 复杂网络 病毒式营销 数据挖掘 核方法 多项式核 社会化媒体 万维网 工程类 生物 结构工程 植物 生态学
作者
Ahmad Asgharian Rezaei,Justin Munoz,Mahdi Jalili,Hamid Khayyam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 119086-119086 被引量:58
标识
DOI:10.1016/j.eswa.2022.119086
摘要

Vital node identification is the problem of finding nodes of highest importance in complex networks. This problem has crucial applications in various contexts such as viral marketing or controlling the propagation of virus or rumours in real-world networks. Existing approaches for vital node identification mainly focus on capturing the importance of a node through a mathematical expression which directly relates structural properties of the node to its vitality. Although these heuristic approaches have achieved good performance in practice, they have weak adaptability, and their performance is limited to specific settings and certain dynamics. Inspired by the power of machine learning models for efficiently capturing different types of patterns and relations, we propose a machine learning-based, data driven approach for vital node identification. The main idea is to train the model with a small portion of the graph, say 0.5% of the nodes, and do the prediction on the rest of the nodes. The ground-truth vitality for the train data is computed by simulating the SIR diffusion method starting from the train nodes. We use collective feature engineering where each node in the network is represented by incorporating elements of its connectivity, degree and extended coreness. Several machine learning models are trained on the node representations, but the best results are achieved by a Support Vector Regression machine with RBF kernel. The empirical results confirms that the proposed model outperforms state-of-the-art models on a selection of datasets, while it also shows more adaptability to changes in the dynamics parameters. With respect to correlation of ranking of the nodes with the ground-truth ranking, the proposed model outperforms other models with a margin as high as 4.63%, while it maintains the lowest variation in performance, with a performance difference as low as 5% across different influence probabilities. The proposed model also obtains the highest uniqueness of ranking, achieving almost unique ranking with a monotonicity relation score of more than 0.9997 on four datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
路过完成签到 ,获得积分10
22秒前
笨笨完成签到 ,获得积分10
30秒前
chichenglin完成签到 ,获得积分10
35秒前
racill完成签到 ,获得积分10
36秒前
xiaosang0619完成签到,获得积分10
39秒前
彩色的芷容完成签到 ,获得积分10
43秒前
fogsea完成签到,获得积分0
46秒前
合适醉蝶完成签到 ,获得积分10
49秒前
zhaoyu完成签到 ,获得积分10
54秒前
LeoBigman完成签到 ,获得积分10
59秒前
myq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
平淡访冬完成签到 ,获得积分10
1分钟前
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
ARIA完成签到 ,获得积分10
2分钟前
aimanqiankun55完成签到 ,获得积分10
2分钟前
2分钟前
卷卷心发布了新的文献求助30
2分钟前
瘦瘦发布了新的文献求助20
2分钟前
zzgpku完成签到,获得积分0
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
666完成签到 ,获得积分0
2分钟前
王多肉完成签到,获得积分10
2分钟前
Lillianzhu1完成签到,获得积分10
2分钟前
222完成签到,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
可爱的函函应助瘦瘦采纳,获得10
3分钟前
zijingsy完成签到 ,获得积分10
4分钟前
ECHO完成签到,获得积分10
4分钟前
小王完成签到 ,获得积分10
4分钟前
clock完成签到 ,获得积分10
4分钟前
jin完成签到,获得积分10
4分钟前
ChatGPT完成签到,获得积分10
4分钟前
栗荔完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839