MulOER-SAN: 2-layer multi-objective framework for exercise recommendation with self-attention networks

计算机科学 新颖性 图层(电子) 机器学习 任务(项目管理) 追踪 人工智能 哲学 化学 神学 管理 有机化学 经济 操作系统
作者
Yimeng Ren,Kun Liang,Yuhu Shang,Yiying Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110117-110117 被引量:3
标识
DOI:10.1016/j.knosys.2022.110117
摘要

Diagnosing the knowledge mastery level of students on required concepts and providing tailored exercises to them is an essential task in e-learning environments. Due to the different knowledge level of students and the large scale of exercise banks, it is difficult for general recommenders to recommend suitable exercises for each student, which decreases their learning efficiency. In this paper, we develop a 2-layer multi-objective framework for exercise recommendation with self-attention networks, abbreviated as MulOER-SAN, to capture the change in students’ knowledge acquisition and thus provide customized exercise recommendations. Note that MulOER-SAN is a 2-layer framework. Via the bottom layer, a self-attention mechanism is adopted to predict the coverage in the next exercise, which can lead the learning process in the right direction. Moreover, we implement a novel knowledge tracing model with an enhanced self-attention sub-layer, thus tracing students’ dynamic knowledge state evolution. As the top layer of the 2-layer model, exercises are filtered according to the bottom layer’s predicted results, and the candidate subsets with appropriate difficulty and novelty are generated. From the perspective of diversity, we also carefully develop a chaotic sparrow search algorithm to further filter the candidate subset to avoid redundancy of recommended results. On the above basis, a simple yet effective difficulty smoothness factor is implemented to generate a high-quality ranking list in a real teaching application scenario. Comprehensive experiments conducted on three real-world datasets have demonstrated that the proposed MulOER-SAN framework significantly outperforms state-of-the-art methods in terms of various evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助酷酷的凝旋采纳,获得10
刚刚
2秒前
细心的老头完成签到 ,获得积分10
2秒前
FlipFlops完成签到,获得积分10
3秒前
wxr完成签到,获得积分10
3秒前
David完成签到,获得积分10
3秒前
5秒前
Singularity举报鲜艳的从波求助涉嫌违规
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
Owen应助骁骁采纳,获得10
8秒前
8秒前
欣喜鹏煊发布了新的文献求助10
10秒前
10秒前
10秒前
12秒前
Liqy发布了新的文献求助10
12秒前
12秒前
花凉发布了新的文献求助10
13秒前
yaoxm发布了新的文献求助10
14秒前
14秒前
15秒前
南风发布了新的文献求助10
15秒前
Dskelf完成签到,获得积分20
16秒前
赖向珊发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
长留完成签到,获得积分10
19秒前
21秒前
负责冰海发布了新的文献求助10
22秒前
wjz发布了新的文献求助10
22秒前
cc给cc的求助进行了留言
22秒前
ihuhiu发布了新的文献求助10
23秒前
23秒前
24秒前
乐乐应助槐序深巷采纳,获得30
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664