MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
努力考博完成签到,获得积分10
刚刚
万能图书馆应助bling采纳,获得10
1秒前
11发布了新的文献求助10
1秒前
Kopernik完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助牛牛采纳,获得30
1秒前
壮观砖家发布了新的文献求助20
1秒前
1秒前
好久不见发布了新的文献求助10
1秒前
优美的觅珍完成签到,获得积分20
2秒前
ATREE发布了新的文献求助10
2秒前
zhou123432完成签到,获得积分10
2秒前
爆米花应助czj采纳,获得10
3秒前
Alan发布了新的文献求助10
3秒前
矮小的凡阳完成签到 ,获得积分10
4秒前
温暖的花瓣完成签到,获得积分10
5秒前
EgbertW完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
zhou123432发布了新的文献求助10
5秒前
lyh完成签到,获得积分10
6秒前
科研通AI6应助优美的觅珍采纳,获得10
6秒前
满意麦片完成签到 ,获得积分10
7秒前
7秒前
小元完成签到,获得积分10
8秒前
8秒前
8秒前
善良的梦桃完成签到,获得积分10
8秒前
慕青应助朴素海亦采纳,获得10
9秒前
9秒前
9秒前
orixero应助欢呼的梦蕊采纳,获得10
9秒前
jisean完成签到 ,获得积分10
10秒前
10秒前
淡淡的妙芙完成签到,获得积分20
10秒前
10秒前
云fly完成签到,获得积分10
10秒前
xiaochenxiaochen完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600240
求助须知:如何正确求助?哪些是违规求助? 4685922
关于积分的说明 14840705
捐赠科研通 4675920
什么是DOI,文献DOI怎么找? 2538610
邀请新用户注册赠送积分活动 1505696
关于科研通互助平台的介绍 1471162