MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助嘻嘻采纳,获得10
刚刚
LiM完成签到,获得积分10
刚刚
希望天下0贩的0应助kkr采纳,获得10
刚刚
刚刚
1秒前
晓月发布了新的文献求助10
1秒前
无花果应助迪迦采纳,获得10
2秒前
2秒前
2秒前
Susie完成签到,获得积分10
2秒前
3秒前
3秒前
开心颜完成签到,获得积分10
3秒前
orixero应助夕未息采纳,获得10
3秒前
光亮的太阳完成签到,获得积分10
3秒前
王敏娜完成签到 ,获得积分10
3秒前
灯灯发布了新的文献求助10
3秒前
asstman完成签到,获得积分10
3秒前
4秒前
李健应助冷泡泡采纳,获得10
4秒前
4秒前
微生完成签到,获得积分10
4秒前
4秒前
LJHUA完成签到,获得积分10
4秒前
乐乐完成签到,获得积分10
4秒前
华仔应助1223采纳,获得20
5秒前
6秒前
6秒前
李晓彤完成签到,获得积分10
6秒前
平淡丹寒完成签到,获得积分20
6秒前
科目三应助kbc采纳,获得10
6秒前
song完成签到 ,获得积分10
6秒前
长情洙完成签到,获得积分10
6秒前
微生发布了新的文献求助10
7秒前
小蘑菇应助辛勤面包采纳,获得10
7秒前
mulberry发布了新的文献求助200
7秒前
量子星尘发布了新的文献求助10
7秒前
Aicy1111111完成签到,获得积分10
7秒前
清雅发布了新的文献求助20
8秒前
西格玛完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285