清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
大喜喜发布了新的文献求助40
14秒前
30秒前
41秒前
大喜喜发布了新的文献求助10
41秒前
chifer完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
种下梧桐树完成签到 ,获得积分10
1分钟前
种下梧桐树完成签到 ,获得积分10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
2分钟前
百里守约完成签到 ,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小鱼应助科研通管家采纳,获得50
4分钟前
完美世界应助AA采纳,获得10
5分钟前
年轻千愁完成签到 ,获得积分10
5分钟前
练得身形似鹤形完成签到 ,获得积分10
6分钟前
6分钟前
AA发布了新的文献求助10
6分钟前
6分钟前
马铃薯完成签到,获得积分10
6分钟前
FashionBoy应助AA采纳,获得10
7分钟前
yf完成签到 ,获得积分10
7分钟前
zxq完成签到 ,获得积分10
8分钟前
drhwang完成签到,获得积分10
8分钟前
特特雷珀萨努完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
Chonger发布了新的文献求助10
8分钟前
film完成签到 ,获得积分10
8分钟前
AA发布了新的文献求助10
8分钟前
红火完成签到 ,获得积分10
9分钟前
9分钟前
情怀应助兜兜采纳,获得10
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4614011
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531