MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助漫天采纳,获得10
刚刚
刚刚
刚刚
曹家如完成签到,获得积分10
刚刚
1秒前
奕师完成签到,获得积分10
1秒前
思源应助听话的初之采纳,获得10
1秒前
兰先生发布了新的文献求助10
2秒前
大朋完成签到,获得积分10
2秒前
2秒前
Lucas应助workingwalking采纳,获得10
3秒前
3秒前
芒果完成签到,获得积分10
3秒前
CipherSage应助未来科研大佬采纳,获得10
4秒前
解羽完成签到,获得积分10
4秒前
ekko完成签到,获得积分20
5秒前
5秒前
aloong完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
汉堡包应助qaqfdmmj采纳,获得10
7秒前
zzzllove完成签到,获得积分10
7秒前
7秒前
可耐的宛丝完成签到,获得积分10
7秒前
幸未晚发布了新的文献求助10
8秒前
9秒前
无极微光应助照相机采纳,获得20
9秒前
9秒前
香蕉诗蕊应助解羽采纳,获得10
9秒前
9秒前
10秒前
nini应助麦麦欧巴采纳,获得10
10秒前
10秒前
10秒前
NexusExplorer应助吕喜梅采纳,获得10
10秒前
10秒前
陈杰完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
大宁完成签到,获得积分10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726