MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的超完成签到,获得积分20
刚刚
lllth完成签到,获得积分10
刚刚
自信的芷天完成签到,获得积分20
刚刚
大个应助Andema采纳,获得30
刚刚
希望天下0贩的0应助嗷嗷采纳,获得10
1秒前
明明就完成签到 ,获得积分10
1秒前
充电宝应助sci大户采纳,获得10
1秒前
1秒前
zhangzhang发布了新的文献求助30
1秒前
yitiaoyu发布了新的文献求助10
2秒前
飞鞚完成签到,获得积分10
3秒前
4秒前
4秒前
haku发布了新的文献求助30
4秒前
5秒前
5秒前
11111发布了新的文献求助10
6秒前
小二郎应助炙热的爆米花采纳,获得30
7秒前
8秒前
852应助学业顺利采纳,获得10
8秒前
8秒前
程若男完成签到,获得积分10
9秒前
jkhjkhj完成签到,获得积分10
9秒前
充电宝应助肚肚采纳,获得10
9秒前
想学习发布了新的文献求助10
10秒前
催催脆脆鲨完成签到,获得积分20
12秒前
DOKEN完成签到,获得积分10
13秒前
忘词完成签到,获得积分10
13秒前
畅快的小懒虫完成签到,获得积分10
13秒前
MX001完成签到,获得积分10
14秒前
种下星星的日子完成签到,获得积分10
15秒前
思源应助催催脆脆鲨采纳,获得10
16秒前
Owen应助弥生采纳,获得10
17秒前
17秒前
17秒前
狮子卷卷完成签到,获得积分0
18秒前
ZZG完成签到,获得积分10
18秒前
阿飞关注了科研通微信公众号
18秒前
科研通AI6应助窥荷采纳,获得10
18秒前
yyyy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530883
求助须知:如何正确求助?哪些是违规求助? 4619878
关于积分的说明 14570572
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478340
关于科研通互助平台的介绍 1449913