MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘的项链完成签到,获得积分10
1秒前
万能图书馆应助SARON采纳,获得10
3秒前
陈熙完成签到 ,获得积分10
4秒前
林机一动发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
axiao完成签到,获得积分10
7秒前
7秒前
7秒前
浮游应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得30
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
汉堡包应助zorro3574采纳,获得10
10秒前
10秒前
刘秋伶发布了新的文献求助10
10秒前
11秒前
传奇3应助木谦采纳,获得10
11秒前
12秒前
明亮的惮发布了新的文献求助10
12秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113381
求助须知:如何正确求助?哪些是违规求助? 4320794
关于积分的说明 13463725
捐赠科研通 4152248
什么是DOI,文献DOI怎么找? 2275111
邀请新用户注册赠送积分活动 1277078
关于科研通互助平台的介绍 1215221