MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小昵称完成签到,获得积分10
1秒前
Gauss应助qqy413采纳,获得30
1秒前
2秒前
缥缈纲应助复杂雪一采纳,获得10
2秒前
尾随温暖完成签到,获得积分10
3秒前
8R60d8应助听语说采纳,获得10
4秒前
我是老大应助闻人华忆采纳,获得10
5秒前
细心慕凝完成签到 ,获得积分10
5秒前
lucky发布了新的文献求助10
6秒前
7秒前
7秒前
赘婿应助gdgd采纳,获得10
9秒前
WLWLW举报red求助涉嫌违规
10秒前
10秒前
10秒前
清水涧发布了新的文献求助10
11秒前
无痕完成签到,获得积分10
13秒前
波子汽水发布了新的文献求助10
13秒前
lucky完成签到,获得积分20
14秒前
15秒前
坚强鸿煊发布了新的文献求助20
15秒前
唐泽雪穗发布了新的文献求助40
16秒前
闻人华忆发布了新的文献求助10
16秒前
隐形不凡完成签到 ,获得积分10
17秒前
17秒前
黄营关注了科研通微信公众号
18秒前
19秒前
zhangyue7777发布了新的文献求助10
20秒前
无辜健柏完成签到,获得积分10
22秒前
超然度陈完成签到,获得积分10
22秒前
YY完成签到,获得积分10
23秒前
wuxin完成签到,获得积分10
23秒前
复杂雪一完成签到,获得积分10
23秒前
24秒前
25秒前
8R60d8应助听语说采纳,获得10
25秒前
土豆泥发布了新的文献求助10
26秒前
搜集达人应助sff采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080