已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张文博完成签到,获得积分20
1秒前
spzdss完成签到,获得积分10
2秒前
佳怡完成签到 ,获得积分10
2秒前
小马哥完成签到,获得积分10
4秒前
FGGFGGU完成签到,获得积分10
5秒前
1111完成签到,获得积分10
6秒前
6秒前
科研通AI6应助张文博采纳,获得10
6秒前
烟花应助张文博采纳,获得10
6秒前
开放的太君完成签到 ,获得积分10
8秒前
9秒前
10秒前
hyt完成签到 ,获得积分10
11秒前
LMosn发布了新的文献求助10
12秒前
大碗完成签到 ,获得积分10
12秒前
诸葛晴天发布了新的文献求助10
14秒前
14秒前
obsession完成签到 ,获得积分10
17秒前
22秒前
gkads应助风语村采纳,获得10
23秒前
倒霉的芒果完成签到 ,获得积分10
23秒前
大帅比完成签到 ,获得积分10
23秒前
25秒前
伶俐的金连完成签到 ,获得积分10
26秒前
leo7发布了新的文献求助10
27秒前
PAIDAXXXX完成签到,获得积分10
27秒前
30秒前
30秒前
31秒前
32秒前
33秒前
123study0发布了新的文献求助10
33秒前
U87发布了新的文献求助30
34秒前
34秒前
yes完成签到 ,获得积分10
35秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
小黄还你好完成签到 ,获得积分10
36秒前
思源应助科研通管家采纳,获得10
36秒前
GingerF应助科研通管家采纳,获得50
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356201
求助须知:如何正确求助?哪些是违规求助? 4488058
关于积分的说明 13971574
捐赠科研通 4388833
什么是DOI,文献DOI怎么找? 2411257
邀请新用户注册赠送积分活动 1403802
关于科研通互助平台的介绍 1377590