已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到 ,获得积分10
1秒前
www完成签到 ,获得积分10
1秒前
Luochen发布了新的文献求助30
3秒前
甜甜的以筠完成签到 ,获得积分10
3秒前
gkads完成签到,获得积分10
3秒前
Setlla完成签到 ,获得积分10
3秒前
无花果应助是阿瑾呀采纳,获得10
4秒前
啊哈哈哈哈哈完成签到 ,获得积分10
5秒前
5秒前
斯文麦片完成签到 ,获得积分10
5秒前
qiang344完成签到 ,获得积分0
5秒前
欢乐谷完成签到,获得积分10
5秒前
7秒前
Denmark完成签到 ,获得积分10
7秒前
James完成签到,获得积分10
7秒前
哔噗哔噗完成签到,获得积分10
8秒前
白英完成签到,获得积分10
8秒前
9秒前
顾矜应助LEOJAY采纳,获得10
9秒前
9秒前
蜜桃小丸子完成签到 ,获得积分10
10秒前
打打应助大鸡腿采纳,获得10
10秒前
yamigogogo完成签到,获得积分10
12秒前
小林同学0219完成签到 ,获得积分10
12秒前
舒服的摇伽完成签到 ,获得积分10
12秒前
12秒前
13秒前
Awei完成签到,获得积分10
13秒前
圈圈完成签到 ,获得积分10
13秒前
Only完成签到 ,获得积分10
14秒前
是阿瑾呀发布了新的文献求助10
16秒前
Anoxra完成签到 ,获得积分10
17秒前
一个爱打乒乓球的彪完成签到 ,获得积分10
17秒前
长庚完成签到,获得积分10
17秒前
arui发布了新的文献求助10
17秒前
机灵花生完成签到,获得积分10
18秒前
19秒前
33完成签到 ,获得积分10
19秒前
小路完成签到,获得积分10
20秒前
深情安青应助arui采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458656
求助须知:如何正确求助?哪些是违规求助? 4564689
关于积分的说明 14296452
捐赠科研通 4489716
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448992
关于科研通互助平台的介绍 1424502