MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蒜蒜发布了新的文献求助30
刚刚
sopha完成签到,获得积分10
刚刚
刚刚
rorocris发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
烟花应助伶俐的采枫采纳,获得10
2秒前
coco关注了科研通微信公众号
3秒前
所爱皆在发布了新的文献求助10
3秒前
4秒前
4秒前
NexusExplorer应助花生采纳,获得10
5秒前
内向灵凡发布了新的文献求助10
5秒前
科研通AI2S应助jennyyu采纳,获得10
5秒前
等等发布了新的文献求助10
6秒前
共享精神应助橘子采纳,获得10
6秒前
Fen3i发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
小二郎应助lk采纳,获得10
7秒前
我是老大应助乌云采纳,获得10
7秒前
Achhz关注了科研通微信公众号
7秒前
8秒前
Akim应助李栗子采纳,获得10
8秒前
容二遥完成签到,获得积分10
9秒前
呆萌的白竹完成签到,获得积分10
9秒前
建建完成签到,获得积分10
9秒前
NI发布了新的文献求助10
9秒前
9秒前
10秒前
曹俊蔚发布了新的文献求助10
10秒前
思源应助霞霞采纳,获得10
10秒前
derlun发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
Orange应助Poker采纳,获得30
12秒前
Akim应助Fen3i采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049