已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助jackie采纳,获得10
2秒前
55155255发布了新的文献求助20
3秒前
xx发布了新的文献求助10
4秒前
Criminology34举报从南到北求助涉嫌违规
4秒前
老孟完成签到,获得积分10
5秒前
jackie完成签到,获得积分20
8秒前
冬柳发布了新的文献求助10
8秒前
好久不见发布了新的文献求助10
8秒前
10秒前
热心易绿完成签到 ,获得积分10
13秒前
LYL完成签到,获得积分10
13秒前
attention应助一粒采纳,获得10
13秒前
jiu发布了新的文献求助10
14秒前
NexusExplorer应助李唐定针采纳,获得20
16秒前
天真醉波完成签到 ,获得积分10
16秒前
科研通AI6应助Bressanone采纳,获得10
18秒前
syc完成签到,获得积分20
18秒前
默默的紫山完成签到,获得积分10
19秒前
Albert应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
星星亮应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
星星亮应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
爱科研的GG完成签到 ,获得积分10
21秒前
syc发布了新的文献求助10
24秒前
24秒前
解惑大师完成签到 ,获得积分10
31秒前
32秒前
震动的平松完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522409
求助须知:如何正确求助?哪些是违规求助? 4613410
关于积分的说明 14538809
捐赠科研通 4551142
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446408