MM-CCNB: Essential protein prediction using MAX-MIN strategies and compartment of common neighboring approach

雅卡索引 计算机科学 数据挖掘 序列(生物学) 度量(数据仓库) 计算生物学 机器学习 人工智能 模式识别(心理学) 生物 遗传学
作者
Anjan Kumar Payra,Banani Saha,Anupam Ghosh
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:228: 107247-107247 被引量:3
标识
DOI:10.1016/j.cmpb.2022.107247
摘要

Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches.In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach.The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly.There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WTC发布了新的文献求助10
1秒前
1秒前
shinen发布了新的文献求助30
2秒前
远山发布了新的文献求助10
2秒前
烟花应助尤珩采纳,获得10
4秒前
dasdnkacmac完成签到 ,获得积分10
4秒前
朴素的小霸王完成签到 ,获得积分20
4秒前
5秒前
不吃芹菜谢谢完成签到,获得积分20
5秒前
Hello应助suiyi采纳,获得10
5秒前
sg驳回了赘婿应助
5秒前
巫马沛春发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
深情安青应助10711采纳,获得10
6秒前
Curry完成签到 ,获得积分10
6秒前
于世不凡完成签到,获得积分10
6秒前
sje完成签到 ,获得积分10
6秒前
psycho发布了新的文献求助10
7秒前
7秒前
8秒前
小马甲应助玛卡巴卡采纳,获得10
8秒前
岁岁安发布了新的文献求助10
8秒前
晚安好梦发布了新的文献求助10
8秒前
CNS完成签到,获得积分10
8秒前
HK发布了新的文献求助10
8秒前
恩希玛发布了新的文献求助10
8秒前
9秒前
9秒前
zyc1111111发布了新的文献求助100
9秒前
Anthony_潇发布了新的文献求助10
10秒前
10秒前
Ammon完成签到,获得积分10
10秒前
Owen应助尊敬的醉波采纳,获得10
10秒前
皮卡啾发布了新的文献求助10
10秒前
强doig发布了新的文献求助10
11秒前
小菜鸟发布了新的文献求助10
11秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782