Sentiment-Aware Fake News Detection on Social Media with Hypergraph Attention Networks

计算机科学 超图 杠杆(统计) 社会化媒体 构造(python库) 依赖关系(UML) 订单(交换) 图形 假新闻 理论计算机科学 情报检索 人工智能 万维网 互联网隐私 计算机网络 数学 财务 离散数学 经济
作者
Diwen Dong,Fuqiang Lin,Guowei Li,Bo Liu
标识
DOI:10.1109/smc53654.2022.9945398
摘要

The rapid development of social media makes it easy for people to acquire information while also providing a platform for publishing and spreading fake news. Fake news brings plenty of explicit and implicit risks to social stability, making fake news detection an issue that deserves attention. Recent methods based on graph neural networks (GNN) achieve impressive results in fake news detection, but their performance is still limited in practice due to the absence of high-order relations between nodes. In this paper, we propose a Sentiment-Aware Hypergraph Attention Network (SA-HyperGAT) for fake news detection. SA-HyperGAT can better leverage different kinds of information from news contents and user comments with hypergraphs, which can capture higher-order dependency between words and sentences compared with general graphs. Specifically, we first construct two hypergraphs with distinct types of nodes and hyperedges to utilize structural information of news contents and sentimental information of user comments. Then we adopt a hypergraph attention network with a dual attention mechanism to learn the composed representations of two hypergraphs for the final prediction. Our proposed SA-HyperGAT outperforms competitive baselines on two real-world datasets. Extensive experimental results prove the effectiveness of each component in SA-HyperGAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敢超发布了新的文献求助10
2秒前
香仔啊发布了新的文献求助10
2秒前
2秒前
华仔应助肉肉采纳,获得10
3秒前
3秒前
zhx完成签到,获得积分10
3秒前
3秒前
4秒前
wangqingxia完成签到,获得积分10
4秒前
汉堡包应助不吃豆皮采纳,获得10
4秒前
锋锋发布了新的文献求助10
4秒前
5秒前
6秒前
搜集达人应助亮仔采纳,获得10
7秒前
在水一方应助zwx采纳,获得10
7秒前
HT完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
所所应助xwt采纳,获得10
10秒前
Judy发布了新的文献求助10
10秒前
熊有鹏发布了新的文献求助10
10秒前
10秒前
11秒前
Alpes发布了新的文献求助30
11秒前
llwxx完成签到,获得积分10
12秒前
12秒前
RJ发布了新的文献求助10
12秒前
14秒前
14秒前
鲸鱼打滚发布了新的文献求助10
14秒前
科研通AI2S应助cui18采纳,获得10
14秒前
Changfh完成签到 ,获得积分10
14秒前
15秒前
15秒前
汉堡包应助浪费青春传奇采纳,获得10
15秒前
15秒前
薯条发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082