Sentiment-Aware Fake News Detection on Social Media with Hypergraph Attention Networks

计算机科学 超图 杠杆(统计) 社会化媒体 构造(python库) 依赖关系(UML) 订单(交换) 图形 假新闻 理论计算机科学 情报检索 人工智能 万维网 互联网隐私 计算机网络 数学 财务 离散数学 经济
作者
Diwen Dong,Fuqiang Lin,Guowei Li,Bo Liu
标识
DOI:10.1109/smc53654.2022.9945398
摘要

The rapid development of social media makes it easy for people to acquire information while also providing a platform for publishing and spreading fake news. Fake news brings plenty of explicit and implicit risks to social stability, making fake news detection an issue that deserves attention. Recent methods based on graph neural networks (GNN) achieve impressive results in fake news detection, but their performance is still limited in practice due to the absence of high-order relations between nodes. In this paper, we propose a Sentiment-Aware Hypergraph Attention Network (SA-HyperGAT) for fake news detection. SA-HyperGAT can better leverage different kinds of information from news contents and user comments with hypergraphs, which can capture higher-order dependency between words and sentences compared with general graphs. Specifically, we first construct two hypergraphs with distinct types of nodes and hyperedges to utilize structural information of news contents and sentimental information of user comments. Then we adopt a hypergraph attention network with a dual attention mechanism to learn the composed representations of two hypergraphs for the final prediction. Our proposed SA-HyperGAT outperforms competitive baselines on two real-world datasets. Extensive experimental results prove the effectiveness of each component in SA-HyperGAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助虚心以丹采纳,获得10
1秒前
taylor发布了新的文献求助10
1秒前
CodeCraft应助Catalysis123采纳,获得10
1秒前
3秒前
Jtiger发布了新的文献求助10
3秒前
xxx_12完成签到,获得积分20
5秒前
Dio发布了新的文献求助10
5秒前
6秒前
8秒前
好吃完成签到 ,获得积分10
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
9秒前
10秒前
林狗发布了新的文献求助10
10秒前
nothing发布了新的文献求助10
11秒前
肥鹏完成签到,获得积分10
11秒前
Tigher发布了新的文献求助30
12秒前
烂漫又槐完成签到,获得积分10
12秒前
wang完成签到,获得积分10
12秒前
天天快乐应助狂野大雄鹰采纳,获得10
13秒前
无心的太君完成签到,获得积分10
13秒前
Owen应助77seven采纳,获得10
13秒前
13秒前
13秒前
Hello应助一二三采纳,获得10
13秒前
13秒前
lvlei完成签到,获得积分20
14秒前
14秒前
魏白晴完成签到,获得积分10
15秒前
16秒前
Wan完成签到,获得积分10
16秒前
Tao完成签到,获得积分10
16秒前
kkdkg发布了新的文献求助10
18秒前
18秒前
orixero应助规定在是日采纳,获得10
18秒前
tkdzjr12345完成签到,获得积分10
18秒前
19秒前
19秒前
追风少年完成签到 ,获得积分10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310502
求助须知:如何正确求助?哪些是违规求助? 2943362
关于积分的说明 8514240
捐赠科研通 2618611
什么是DOI,文献DOI怎么找? 1431244
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649616