Sentiment-Aware Fake News Detection on Social Media with Hypergraph Attention Networks

计算机科学 超图 杠杆(统计) 社会化媒体 构造(python库) 依赖关系(UML) 订单(交换) 图形 假新闻 理论计算机科学 情报检索 人工智能 万维网 互联网隐私 计算机网络 数学 财务 离散数学 经济
作者
Diwen Dong,Fuqiang Lin,Guowei Li,Bo Liu
标识
DOI:10.1109/smc53654.2022.9945398
摘要

The rapid development of social media makes it easy for people to acquire information while also providing a platform for publishing and spreading fake news. Fake news brings plenty of explicit and implicit risks to social stability, making fake news detection an issue that deserves attention. Recent methods based on graph neural networks (GNN) achieve impressive results in fake news detection, but their performance is still limited in practice due to the absence of high-order relations between nodes. In this paper, we propose a Sentiment-Aware Hypergraph Attention Network (SA-HyperGAT) for fake news detection. SA-HyperGAT can better leverage different kinds of information from news contents and user comments with hypergraphs, which can capture higher-order dependency between words and sentences compared with general graphs. Specifically, we first construct two hypergraphs with distinct types of nodes and hyperedges to utilize structural information of news contents and sentimental information of user comments. Then we adopt a hypergraph attention network with a dual attention mechanism to learn the composed representations of two hypergraphs for the final prediction. Our proposed SA-HyperGAT outperforms competitive baselines on two real-world datasets. Extensive experimental results prove the effectiveness of each component in SA-HyperGAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1010发布了新的文献求助10
刚刚
好好读书发布了新的文献求助10
1秒前
皮皮关注了科研通微信公众号
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
浮游应助苹果味水果采纳,获得10
2秒前
3秒前
3秒前
5秒前
哈no完成签到,获得积分10
5秒前
6秒前
MoriZhang完成签到,获得积分10
6秒前
7秒前
7秒前
DT发布了新的文献求助10
8秒前
赵千灵发布了新的文献求助10
8秒前
自行车v完成签到,获得积分10
8秒前
10秒前
10秒前
CoCo完成签到,获得积分10
10秒前
高高雅青完成签到,获得积分20
11秒前
沉静代秋发布了新的文献求助10
11秒前
12秒前
盱眙庵完成签到,获得积分10
13秒前
烟花应助王志远采纳,获得10
13秒前
13秒前
谁都别想PUA我完成签到,获得积分10
14秒前
14秒前
14秒前
Orange应助风中的小鸽子采纳,获得10
15秒前
15秒前
16秒前
16秒前
MrW发布了新的文献求助10
17秒前
兴奋硬币发布了新的文献求助30
17秒前
英俊的铭应助Ono采纳,获得10
17秒前
17秒前
共享精神应助小萌采纳,获得10
18秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582