阳离子聚合
电解质
聚合物
离子键合
锂(药物)
阳极
材料科学
阴极
电池(电)
电化学
电导率
单体
离子
化学
化学工程
无机化学
高分子化学
离子电导率
有机化学
复合材料
电极
工程类
物理化学
热力学
内分泌学
功率(物理)
物理
医学
作者
Xinyuan Shan,Madison Morey,Zhenxi Li,Sheng Zhao,Shenghan Song,Zhenxue Xiao,Hao Feng,Shilun Gao,Guo‐Ran Li,Alexei P. Sokolov,Emily Ryan,Kang Xu,Ming Tian,Yi He,Huabin Yang,Pengfei Cao
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-11-08
卷期号:7 (12): 4342-4351
被引量:33
标识
DOI:10.1021/acsenergylett.2c02349
摘要
The strategies for achieving a high cationic transport polymer electrolyte (HTPE) have mostly focused on developing single-ion conducting polymer electrolytes, which is far from being practical due to sluggish ion transport. Herein, we present an unprecedented approach on designing an HTPE via in situ copolymerization of regular ionic conducting and single-ion conducting monomers in the presence of a lithium salt. The HTPE, i.e., poly(VEC10-r-LiSTFSI), exhibits a combination of impressive properties, including high cationic transport number (0.73), high ionic conductivity (1.60 mS cm–1), tolerance of high current density (10 mA cm–2), and high anodic stability (5 V). A lithium-metal battery constructed with the developed HTPE retains 70% capacity after 1200 cycles at 1 C, and it also operates in a wide temperature range and with a high mass loading of the cathode. Advanced characterizations and computations reveal that the high tLi+ and high ionic conductivity effectively suppress Li0-dendrite growth by circumventing concentration polarizations that plague most polymer electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI