A Novel Time-Domain Graph Tensor Attention Network for Specific Emitter Identification

图形 计算机科学 特征(语言学) 编码 张量(固有定义) 图论 时域 模式识别(心理学) 理论计算机科学 算法 人工智能 数学 基因 纯数学 化学 哲学 组合数学 生物化学 语言学 计算机视觉
作者
Haozhe Li,Yilin Liao,Wenhai Wang,Hui Junpeng,Jiaqi Liu,Xinggao Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:15
标识
DOI:10.1109/tim.2023.3241976
摘要

Specific emitter identification (SEI) is significant in military communication scenarios, cognitive radio, and self-organized networks. However, these methods only consider the feature of signals or the feature after signal transformation. In other words, the time-domain correlation of each feature and relationships between features are seldom taken into account. A novel method is, therefore, proposed, which includes a transformation to convert the specific emitter signal into a graph tensor and a model named time-domain graph tensor attention network (TDGTAN) to encode graph tensors for SEI. Specifically, the model includes two main parts. The first part is intrapropagation, which uses the relationship between different sampling points through message propagation in each graph. The other part is interpropagation, which propagates cross-layer messages between different graphs at the same sampling point, to realize the use of the relationship between different features. Extensive experiments are conducted on a real-world dataset, and the result shows that the proposed approach acquires higher accuracy (ACC) and intriguing anti-interference performance. In addition, the proposed model also has higher parameter utilization and calculation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gigi发布了新的文献求助10
1秒前
温暖的问候完成签到,获得积分10
1秒前
英姑应助lilac采纳,获得10
1秒前
Rainnnn发布了新的文献求助10
1秒前
CR完成签到 ,获得积分10
1秒前
Jasper应助七个丸子采纳,获得10
2秒前
左丘傲菡发布了新的文献求助30
2秒前
4秒前
4秒前
mymEN完成签到 ,获得积分10
4秒前
自闭的研究生完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助顾宇采纳,获得10
8秒前
小马甲应助安详的韩庆采纳,获得10
8秒前
拉长的冷霜完成签到 ,获得积分10
8秒前
9秒前
10秒前
jar7989发布了新的文献求助10
10秒前
爆米花应助Synan采纳,获得10
11秒前
研友_8DAv0L发布了新的文献求助10
11秒前
Rainnnn完成签到,获得积分10
14秒前
14秒前
15秒前
杏仁露发布了新的文献求助10
15秒前
17秒前
17秒前
我是老大应助研友_8DAv0L采纳,获得10
18秒前
大个应助无敌葡萄爱学习采纳,获得10
18秒前
iNk应助yyyyyyyyyy采纳,获得20
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
海浪发布了新的文献求助10
21秒前
Ephemerality完成签到 ,获得积分10
23秒前
爆米花应助魏淑芬采纳,获得10
23秒前
虚幻的雪巧完成签到,获得积分10
24秒前
斯文败类应助调皮正豪采纳,获得50
25秒前
风中垣完成签到,获得积分10
26秒前
hh完成签到,获得积分10
27秒前
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689