Few-Shot Learning of Compact Models via Task-Specific Meta Distillation

元学习(计算机科学) 计算机科学 软件部署 水准点(测量) 任务(项目管理) 人工智能 机器学习 适应(眼睛) 基线(sea) 弹丸 元建模 软件工程 光学 物理 地质学 经济 有机化学 化学 海洋学 管理 地理 大地测量学
作者
Yong Wu,Shekhor Chanda,Mehrdad Hosseinzadeh,Zhi Liu,Yan Wang
标识
DOI:10.1109/wacv56688.2023.00620
摘要

We consider a new problem of few-shot learning of com-pact models. Meta-learning is a popular approach for few-shot learning. Previous work in meta-learning typically assumes that the model architecture during meta-training is the same as the model architecture used for final deployment. In this paper, we challenge this basic assumption. For final deployment, we often need the model to be small. But small models usually do not have enough capacity to effectively adapt to new tasks. In the mean time, we often have access to the large dataset and extensive computing power during meta-training since meta-training is typically per-formed on a server. In this paper, we propose task-specific meta distillation that simultaneously learns two models in meta-learning: a large teacher model and a small student model. These two models are jointly learned during meta-training. Given a new task during meta-testing, the teacher model is first adapted to this task, then the adapted teacher model is used to guide the adaptation of the student model. The adapted student model is used for final deployment. We demonstrate the effectiveness of our approach in few-shot image classification using model-agnostic meta-learning (MAML). Our proposed method outperforms other alternatives on several benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空完成签到 ,获得积分10
刚刚
文艺的青旋完成签到 ,获得积分10
刚刚
青黛完成签到 ,获得积分10
7秒前
大橙子发布了新的文献求助10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
量子星尘发布了新的文献求助10
16秒前
明钟达完成签到 ,获得积分10
24秒前
byyyy完成签到,获得积分10
27秒前
高高的哈密瓜完成签到 ,获得积分10
31秒前
Rondab应助橙汁采纳,获得10
34秒前
读书的时候完成签到,获得积分10
36秒前
颜云尔完成签到,获得积分10
47秒前
孤独雨梅完成签到,获得积分10
50秒前
woobinhua完成签到 ,获得积分10
50秒前
雪落你看不见完成签到,获得积分10
52秒前
十月天秤完成签到,获得积分0
53秒前
依文完成签到,获得积分20
53秒前
ymr完成签到 ,获得积分10
54秒前
哦哦哦完成签到 ,获得积分10
55秒前
jzmupyj完成签到,获得积分10
55秒前
大橙子发布了新的文献求助10
58秒前
xdlongchem完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
小梦完成签到,获得积分10
1分钟前
xuhang完成签到,获得积分10
1分钟前
ZSHAN完成签到,获得积分10
1分钟前
美满的机器猫完成签到,获得积分10
1分钟前
王小磊完成签到,获得积分10
1分钟前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
扁舟灬完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
倦梦还完成签到,获得积分10
1分钟前
Sunrise完成签到,获得积分10
1分钟前
yyyy发布了新的文献求助10
1分钟前
自觉柠檬完成签到 ,获得积分10
1分钟前
ergatoid完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022