Few-Shot Learning of Compact Models via Task-Specific Meta Distillation

元学习(计算机科学) 计算机科学 软件部署 水准点(测量) 任务(项目管理) 人工智能 机器学习 适应(眼睛) 基线(sea) 弹丸 元建模 软件工程 光学 物理 地质学 经济 有机化学 化学 海洋学 管理 地理 大地测量学
作者
Yong Wu,Shekhor Chanda,Mehrdad Hosseinzadeh,Zhi Liu,Yan Wang
标识
DOI:10.1109/wacv56688.2023.00620
摘要

We consider a new problem of few-shot learning of com-pact models. Meta-learning is a popular approach for few-shot learning. Previous work in meta-learning typically assumes that the model architecture during meta-training is the same as the model architecture used for final deployment. In this paper, we challenge this basic assumption. For final deployment, we often need the model to be small. But small models usually do not have enough capacity to effectively adapt to new tasks. In the mean time, we often have access to the large dataset and extensive computing power during meta-training since meta-training is typically per-formed on a server. In this paper, we propose task-specific meta distillation that simultaneously learns two models in meta-learning: a large teacher model and a small student model. These two models are jointly learned during meta-training. Given a new task during meta-testing, the teacher model is first adapted to this task, then the adapted teacher model is used to guide the adaptation of the student model. The adapted student model is used for final deployment. We demonstrate the effectiveness of our approach in few-shot image classification using model-agnostic meta-learning (MAML). Our proposed method outperforms other alternatives on several benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长安完成签到,获得积分10
1秒前
Hao完成签到,获得积分10
1秒前
JamesPei应助王小志采纳,获得10
1秒前
詹密完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
酷波er应助NEMO采纳,获得10
4秒前
4秒前
4秒前
4秒前
情怀应助shirleeyeahe采纳,获得10
4秒前
5秒前
元元应助xzy采纳,获得20
5秒前
泥花完成签到,获得积分10
5秒前
247793325完成签到,获得积分20
5秒前
眼睛大的冰岚完成签到,获得积分10
5秒前
YY完成签到 ,获得积分10
5秒前
6秒前
雨天慢行完成签到,获得积分10
6秒前
韦威风发布了新的文献求助10
6秒前
科目三应助深情的不评采纳,获得10
6秒前
飞快的梦易完成签到,获得积分10
7秒前
Akim应助1b采纳,获得10
7秒前
末岛完成签到,获得积分10
7秒前
sweetbearm应助benben采纳,获得10
7秒前
7秒前
8秒前
科研通AI5应助今今采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
YY完成签到,获得积分10
8秒前
首席医官完成签到,获得积分10
9秒前
坚定迎天完成签到,获得积分10
9秒前
Zzzoey发布了新的文献求助10
10秒前
搜集达人应助小罗飞飞飞采纳,获得10
10秒前
詹卫卫完成签到 ,获得积分10
10秒前
10秒前
宇_发布了新的文献求助20
10秒前
11秒前
esdeath发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794