Few-Shot Learning of Compact Models via Task-Specific Meta Distillation

元学习(计算机科学) 计算机科学 软件部署 水准点(测量) 任务(项目管理) 人工智能 机器学习 适应(眼睛) 基线(sea) 弹丸 元建模 软件工程 光学 物理 地质学 经济 有机化学 化学 海洋学 管理 地理 大地测量学
作者
Yong Wu,Shekhor Chanda,Mehrdad Hosseinzadeh,Zhi Liu,Yan Wang
标识
DOI:10.1109/wacv56688.2023.00620
摘要

We consider a new problem of few-shot learning of com-pact models. Meta-learning is a popular approach for few-shot learning. Previous work in meta-learning typically assumes that the model architecture during meta-training is the same as the model architecture used for final deployment. In this paper, we challenge this basic assumption. For final deployment, we often need the model to be small. But small models usually do not have enough capacity to effectively adapt to new tasks. In the mean time, we often have access to the large dataset and extensive computing power during meta-training since meta-training is typically per-formed on a server. In this paper, we propose task-specific meta distillation that simultaneously learns two models in meta-learning: a large teacher model and a small student model. These two models are jointly learned during meta-training. Given a new task during meta-testing, the teacher model is first adapted to this task, then the adapted teacher model is used to guide the adaptation of the student model. The adapted student model is used for final deployment. We demonstrate the effectiveness of our approach in few-shot image classification using model-agnostic meta-learning (MAML). Our proposed method outperforms other alternatives on several benchmark datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助moyu123采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
邓什么邓发布了新的文献求助10
3秒前
朝韵完成签到 ,获得积分10
3秒前
wise111发布了新的文献求助10
3秒前
3秒前
nipoo发布了新的文献求助10
4秒前
ZhongF完成签到,获得积分10
5秒前
6秒前
6秒前
绾宸发布了新的文献求助10
6秒前
Akim应助王子睿采纳,获得10
6秒前
项南风发布了新的文献求助10
6秒前
7秒前
科目三应助es采纳,获得10
8秒前
yy完成签到,获得积分10
9秒前
Akim应助rhsfdfb采纳,获得10
9秒前
Ryan完成签到,获得积分0
10秒前
10秒前
11秒前
王定伟完成签到,获得积分10
11秒前
英俊的铭应助cera采纳,获得10
11秒前
脑洞疼应助大力的冥王星采纳,获得10
11秒前
吴欣欣发布了新的文献求助10
12秒前
MC番薯发布了新的文献求助20
13秒前
meteor完成签到 ,获得积分10
13秒前
14秒前
dydydyd完成签到,获得积分10
14秒前
大模型应助wx123采纳,获得10
15秒前
15秒前
胖胖糖完成签到,获得积分10
15秒前
Lyl发布了新的文献求助10
16秒前
芋头读文献完成签到,获得积分10
16秒前
napnap完成签到 ,获得积分10
16秒前
17秒前
团子发布了新的文献求助10
17秒前
隐形曼青应助扎西娃子采纳,获得10
17秒前
研友_VZG7GZ应助项南风采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932