A two-stage Gaussian process regression model for remaining useful prediction of bearings

克里金 方位(导航) 高斯过程 残余物 灵活性(工程) 过程(计算) 维纳过程 降级(电信) 计算机科学 工程类 使用寿命 高斯分布 可靠性工程 人工智能 机器学习 算法 统计 数学 电子工程 物理 操作系统 量子力学
作者
Jin Cui,Licai Cao,Tianxiao Zhang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:238 (2): 333-348 被引量:7
标识
DOI:10.1177/1748006x221141744
摘要

Bearing is one of the most important supporting components in mechanical equipment and its health status has a significant impact on the overall performance of equipment. The remaining useful life (RUL) prediction of bearings is critical in adopting a condition-based maintenance strategy to ensure reliable equipment operation. To accurately predict the RUL of bearings, this paper proposes a two-stage Gaussian process regression (GPR) model, which combines the flexibility of the Gaussian process and the physical mechanism of the Wiener process. Compared with the conventional GPR model, the proposed model can reasonably adapt to the statistical characteristics of bearings degradation and provide more stable predictions. In addition, the paper proposes a new degradation detection approach based on the Euclidean distance to distinguish the two stages of the bearing service life cycle, which considers the global characteristics of bearing degradation and can accurately detect the beginning point of bearing degradation. The experimental results show that the proposed two-stage GPR model can help to improve the precision and accuracy of degradation path tracking and RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Lmy完成签到,获得积分10
3秒前
Winky完成签到 ,获得积分10
4秒前
ChatGPT发布了新的文献求助10
4秒前
打打应助dudu不吃榴莲采纳,获得10
5秒前
Akim应助快乐小子采纳,获得10
5秒前
5秒前
wuyany33发布了新的文献求助10
5秒前
我爱写论文完成签到,获得积分10
6秒前
可爱睫毛发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
桐桐应助77采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
丸子鱼发布了新的文献求助10
11秒前
11秒前
汉堡包应助大宝君采纳,获得10
11秒前
kkk发布了新的文献求助10
13秒前
LCZz_Li发布了新的文献求助10
14秒前
15秒前
16秒前
小蘑菇应助斯可采纳,获得10
16秒前
16秒前
17秒前
小于完成签到 ,获得积分10
17秒前
深情安青应助可爱睫毛采纳,获得10
17秒前
万能图书馆应助111采纳,获得10
18秒前
18秒前
wanci应助masterwill采纳,获得10
18秒前
星辰完成签到 ,获得积分10
18秒前
18秒前
19秒前
快乐小子发布了新的文献求助10
19秒前
19秒前
xlj发布了新的文献求助10
19秒前
lucky完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577789
求助须知:如何正确求助?哪些是违规求助? 3996987
关于积分的说明 12373945
捐赠科研通 3670961
什么是DOI,文献DOI怎么找? 2023136
邀请新用户注册赠送积分活动 1057189
科研通“疑难数据库(出版商)”最低求助积分说明 944157