四环素
生物吸附
生物降解
化学
废水
污水处理
四环素类抗生素
降级(电信)
微生物学
制浆造纸工业
环境化学
生物
环境工程
吸附
抗生素
环境科学
有机化学
电信
工程类
吸附
计算机科学
作者
Shulian Wang,Yu Zhang,Hongmei Ge,Huan Hou,Huiqin Zhang,Kewu Pi
摘要
Due to the increasing use of antibiotics, tetracycline was frequently detected in wastewater. As a novel technology, algal-bacterial granular sludge process is expected to be widely used in wastewater treatment. However, the degradation effect of tetracycline by algal-bacterial granular sludge process and its degradation path is still unknown. In this study, mature and stable algal-bacterial granular sludge was cultured and the degradation of tetracycline by it was investigated. The results showed that the removal amount of 1-25 mg/L tetracycline by algal-bacterial granular sludge was 0.09-1.45 mg/g volatile suspended solids (VSS), in which the adsorption amount was 0.06-0.17 mg/g VSS and the degradation amount was 0.03-1.27 mg/g VSS. Tetracycline biosorption was dominant at its concentration of 1-3 mg/L, while biodegradation was predominant at 5-25 mg/L of tetracycline. At tetracycline concentration of 3-5 mg/L, the contribution of biosorption and biodegradation to tetracycline removal by algal-bacterial granular sludge process was almost equal. Algal-bacterial granular sludge could effectively degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. In addition, the degradation products were nontoxic and hardly pose a threat to environmental health. The research results of this paper provide a solid theoretical basis for tetracycline removal by algal-bacterial granular sludge and a reference for the development of algal-bacterial granular sludge process for wastewater treatment in the presence of tetracycline. PRACTITIONER POINTS: Mature and stable algal-bacterial granular sludge was cultured. Tetracycline was removed by algal-bacterial granular sludge through biosorption and biodegradation. Algal-bacterial granular sludge could degrade tetracycline through demethylation, dehydrogenation, deacylation, and deamination or their combination. The degradation products were nontoxic.
科研通智能强力驱动
Strongly Powered by AbleSci AI