Chemical profiling and quantification analysis of flavonoids in different varieties of Euryales Semen by ultra‐high‐performance liquid chromatography with tandem mass spectrometry

色谱法 化学 重复性 精液 串联质谱法 质谱法 检出限 液相色谱-质谱法 遗传学 生物
作者
Dishuai Li,Xuemei Cheng,Zheng Jiang,Zun-Rui Shi,Cheng Qu,Hui Yan,Qinan Wu
出处
期刊:Journal of Separation Science [Wiley]
卷期号:46 (7) 被引量:4
标识
DOI:10.1002/jssc.202200913
摘要

Euryales Semen was a traditional Chinese medicine, which has been commonly used to treat spermatorrhea, enuresis, and frequent urination. Flavonoids were a critical ingredient in determining the function and quality of Euryales Semen. At present, no effective method has been established for the qualitative of Euryales Semen flavonoids. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry method was established for flavonoids. By comparison with standard or literature data, 32 flavonoid compounds have been identified in Euryales Semen. Based on the qualitative results, an ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy method was developed for the main components, and the linearity, the limit of detection, limit of quantification, repeatability, precision, stability, and recovery of the method were verified. The principal component analysis and the hierarchical clustering heatmaps analysis showed that the 30 batches of samples were distinctly separated into the North Gordon Euryale and South Gordon Euryale, and the measured contents of the six flavonoids in North Gordon Euryale were more abundant than in South Gordon Euryale, especially isoquercitrin, hesperetin, and quercetin. It provided a scientific basis for the quality control of Euryales Semen and a theoretical basis for the rational utilization of Euryales Semen resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
金阿垚在科研应助lily采纳,获得10
刚刚
1秒前
1秒前
2秒前
ohwhale完成签到 ,获得积分10
3秒前
阳离子完成签到,获得积分10
4秒前
4秒前
小二郎应助个性的以菱采纳,获得10
5秒前
5秒前
拒绝头秃完成签到 ,获得积分20
5秒前
无尘泪完成签到,获得积分10
6秒前
guanshujuan完成签到,获得积分10
6秒前
Ava应助泯珉采纳,获得10
7秒前
hay完成签到,获得积分10
7秒前
lailight完成签到,获得积分10
8秒前
小糖完成签到 ,获得积分10
8秒前
8秒前
团子完成签到 ,获得积分10
9秒前
义气的健柏完成签到,获得积分10
9秒前
隐形曼青应助In采纳,获得10
9秒前
Jasper应助wlei采纳,获得10
9秒前
qiushui发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
顾矜应助淡淡的连虎采纳,获得10
10秒前
研友_LwlRen发布了新的文献求助30
10秒前
kuzzi发布了新的文献求助10
11秒前
科研通AI5应助lareina采纳,获得10
12秒前
12秒前
科研通AI5应助小嘉脾气大采纳,获得10
12秒前
Nancy完成签到 ,获得积分10
13秒前
小蘑菇应助David采纳,获得10
13秒前
13秒前
阳离子发布了新的文献求助10
13秒前
九月完成签到,获得积分10
14秒前
14秒前
15秒前
在水一方应助arrow采纳,获得10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300