Nanosystems for Brain Targeting of Antipsychotic Drugs: An Update on the Most Promising Nanocarriers for Increased Bioavailability and Therapeutic Efficacy

纳米载体 生物利用度 药理学 抗精神病药 抗精神病药 医学 药品 精神分裂症(面向对象编程) 精神科
作者
Maria Daniela Ferreira,Joana Duarte,Francisco Veiga,Ana Cláudia Paiva‐Santos,Patrícia C. Pires
出处
期刊:Pharmaceutics [MDPI AG]
卷期号:15 (2): 678-678 被引量:13
标识
DOI:10.3390/pharmaceutics15020678
摘要

Orally administered antipsychotic drugs are the first-line treatment for psychotic disorders, such as schizophrenia and bipolar disorder. Nevertheless, adverse drug reactions jeopardize clinical outcomes, resulting in patient non-compliance. The design formulation strategies for enhancing brain drug delivery has been a major challenge, mainly due to the restrictive properties of the blood-brain barrier. However, recent pharmacokinetic and pharmacodynamic in vivo assays confirmed the advantage of the intranasal route when compared to oral and intravenous administration, as it allows direct nose-to-brain drug transport via neuronal pathways, reducing systemic side effects and maximizing therapeutic outcomes. In addition, the incorporation of antipsychotic drugs into nanosystems such as polymeric nanoparticles, polymeric mixed micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, nanoemulgels, nanosuspensions, niosomes and spanlastics, has proven to be quite promising. The developed nanosystems, having a small and homogeneous particle size (ideal for nose-to-brain delivery), high encapsulation efficiency and good stability, resulted in improved brain bioavailability and therapeutic-like effects in animal models. Hence, although it is essential to continue research in this field, the intranasal delivery of nanosystems for the treatment of schizophrenia, bipolar disorder and other related disorders has proven to be quite promising, opening a path for future therapies with higher efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼语风应助科研通管家采纳,获得30
刚刚
刚刚
爱静静应助科研通管家采纳,获得10
刚刚
1秒前
RenS完成签到,获得积分10
1秒前
曲阁完成签到 ,获得积分10
1秒前
1秒前
2秒前
犹豫绾绾完成签到 ,获得积分10
3秒前
上官若男应助跳跃的中蓝采纳,获得10
4秒前
无花果应助酷酷采纳,获得10
4秒前
丘比特应助人物让人采纳,获得10
4秒前
guo发布了新的文献求助10
5秒前
jiujiuhuang发布了新的文献求助10
6秒前
6秒前
ding应助1111采纳,获得10
6秒前
7秒前
7秒前
7秒前
火星上的沛春完成签到,获得积分10
7秒前
8秒前
9秒前
勤奋幻柏发布了新的文献求助30
10秒前
高大的曼寒完成签到,获得积分10
10秒前
冬冬完成签到,获得积分10
10秒前
lwg完成签到,获得积分10
10秒前
李洛洛完成签到,获得积分10
10秒前
11秒前
zanilia发布了新的文献求助10
13秒前
13秒前
Gahye发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Onlyyou发布了新的文献求助10
15秒前
16秒前
16秒前
ddd发布了新的文献求助10
18秒前
汉堡包应助即将高产sci采纳,获得10
19秒前
酷酷发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310676
求助须知:如何正确求助?哪些是违规求助? 2943441
关于积分的说明 8515247
捐赠科研通 2618790
什么是DOI,文献DOI怎么找? 1431435
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643