Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups

医学 冲程(发动机) 一致性 队列 弗雷明翰风险评分 人口学 队列研究 弗雷明翰心脏研究 社区动脉粥样硬化风险 疾病 老年学 内科学 机械工程 工程类 社会学
作者
Chuan Hong,Michael Pencina,Daniel Wojdyla,Jennifer L. Hall,Suzanne E. Judd,Michael P. Cary,Matthew Engelhard,Samuel I. Berchuck,Ying Xian,Ralph B. D’Agostino,George Howard,Brett Kissela,Ricardo Henao
出处
期刊:JAMA [American Medical Association]
卷期号:329 (4): 306-306 被引量:55
标识
DOI:10.1001/jama.2022.24683
摘要

Importance Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less ( P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke–specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunshine发布了新的文献求助10
刚刚
tyliu完成签到,获得积分10
刚刚
1秒前
momucy发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
adasdad完成签到,获得积分10
3秒前
李不开你发布了新的文献求助10
3秒前
4秒前
阿刚发布了新的文献求助10
5秒前
JazzWon完成签到,获得积分10
5秒前
ZYao65发布了新的文献求助10
7秒前
今日不再蛇皇应助离离采纳,获得30
7秒前
沉默沛岚完成签到,获得积分10
7秒前
msy1998发布了新的文献求助10
7秒前
8秒前
mailure完成签到,获得积分10
8秒前
13完成签到,获得积分10
8秒前
gzj完成签到,获得积分10
8秒前
Rashalin发布了新的文献求助10
9秒前
10秒前
10秒前
stu_zhou完成签到,获得积分10
10秒前
ljw发布了新的文献求助10
10秒前
科研通AI2S应助小伊采纳,获得10
10秒前
10秒前
完美世界应助save采纳,获得10
11秒前
13秒前
水晶发布了新的文献求助10
13秒前
betyby完成签到 ,获得积分10
13秒前
科研通AI6应助jyyg采纳,获得10
15秒前
15秒前
科研通AI6应助于小文采纳,获得10
15秒前
潮湿梦发布了新的文献求助10
15秒前
爆米花应助5mg采纳,获得10
15秒前
357发布了新的文献求助30
15秒前
紫瓜发布了新的文献求助10
15秒前
科研通AI6应助宇文向雪采纳,获得10
15秒前
小浣熊完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513