亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups

医学 冲程(发动机) 一致性 队列 弗雷明翰风险评分 人口学 队列研究 弗雷明翰心脏研究 社区动脉粥样硬化风险 疾病 老年学 内科学 机械工程 工程类 社会学
作者
Chuan Hong,Michael Pencina,Daniel Wojdyla,Jennifer L. Hall,Suzanne E. Judd,Michael P. Cary,Matthew M. Engelhard,Samuel I. Berchuck,Ying Xian,Ralph B. D’Agostino,George Howard,Brett Kissela,Ricardo Henao
出处
期刊:JAMA [American Medical Association]
卷期号:329 (4): 306-306 被引量:33
标识
DOI:10.1001/jama.2022.24683
摘要

Importance Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less ( P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke–specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助racheal采纳,获得10
23秒前
33秒前
racheal发布了新的文献求助10
39秒前
1分钟前
juanjuan完成签到,获得积分10
1分钟前
juanjuan发布了新的文献求助10
1分钟前
racheal完成签到,获得积分20
2分钟前
古月菲菲完成签到,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得30
2分钟前
003完成签到,获得积分10
2分钟前
SDNUDRUG发布了新的文献求助10
2分钟前
光合作用完成签到,获得积分10
3分钟前
SDNUDRUG完成签到,获得积分10
3分钟前
仁者无惧完成签到 ,获得积分10
3分钟前
北极企鹅完成签到,获得积分20
4分钟前
大模型应助666采纳,获得10
4分钟前
北极企鹅发布了新的文献求助10
4分钟前
ddd应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Benhnhk21完成签到,获得积分10
5分钟前
奈思完成签到 ,获得积分10
6分钟前
友好大树完成签到,获得积分10
6分钟前
Akim应助友好大树采纳,获得10
7分钟前
7分钟前
al完成签到 ,获得积分10
7分钟前
mashibeo完成签到,获得积分10
7分钟前
8分钟前
yu发布了新的文献求助10
8分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
小二郎应助yu采纳,获得10
8分钟前
笨蛋美女完成签到 ,获得积分10
8分钟前
9分钟前
李健应助淡然的宛菡采纳,获得10
9分钟前
田様应助Object采纳,获得10
10分钟前
10分钟前
Object发布了新的文献求助10
10分钟前
10分钟前
Owen应助科研通管家采纳,获得30
10分钟前
小禾完成签到 ,获得积分10
11分钟前
房天川完成签到 ,获得积分10
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Building a New American State 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695083
求助须知:如何正确求助?哪些是违规求助? 3246636
关于积分的说明 9850395
捐赠科研通 2958206
什么是DOI,文献DOI怎么找? 1622043
邀请新用户注册赠送积分活动 767637
科研通“疑难数据库(出版商)”最低求助积分说明 741239