Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups

医学 冲程(发动机) 一致性 队列 弗雷明翰风险评分 人口学 队列研究 弗雷明翰心脏研究 社区动脉粥样硬化风险 疾病 老年学 内科学 机械工程 工程类 社会学
作者
Chuan Hong,Michael Pencina,Daniel Wojdyla,Jennifer L. Hall,Suzanne E. Judd,Michael P. Cary,Matthew Engelhard,Samuel I. Berchuck,Ying Xian,Ralph B. D’Agostino,George Howard,Brett Kissela,Ricardo Henao
出处
期刊:JAMA [American Medical Association]
卷期号:329 (4): 306-306 被引量:62
标识
DOI:10.1001/jama.2022.24683
摘要

Importance Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less ( P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke–specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在写了发布了新的文献求助10
刚刚
内向映天完成签到 ,获得积分10
刚刚
幽默便当完成签到 ,获得积分20
1秒前
迷路的祥完成签到 ,获得积分10
1秒前
小王发布了新的文献求助10
1秒前
Lucas应助迷路水池采纳,获得30
1秒前
mmmio完成签到,获得积分10
2秒前
小蘑菇应助软嘴唇采纳,获得10
2秒前
ASZXDW发布了新的文献求助10
2秒前
2秒前
科研道尔格完成签到,获得积分10
2秒前
X1x1A0Q1完成签到,获得积分10
2秒前
Catherine发布了新的文献求助30
3秒前
甜蜜靖雁完成签到 ,获得积分10
3秒前
CipherSage应助无语的怜蕾采纳,获得10
3秒前
小池同学完成签到,获得积分10
3秒前
zcl应助任性采萱采纳,获得50
4秒前
浮游应助Sheepycat采纳,获得10
4秒前
ywang发布了新的文献求助10
4秒前
科研小陈发布了新的文献求助10
4秒前
yangqi完成签到,获得积分10
4秒前
5秒前
dongle完成签到,获得积分10
5秒前
Pan完成签到 ,获得积分10
6秒前
6秒前
川荣李奈完成签到 ,获得积分10
7秒前
牛京完成签到,获得积分10
8秒前
浮游应助酷炫傲安采纳,获得10
8秒前
李健应助ask采纳,获得10
8秒前
cheers完成签到,获得积分10
8秒前
Owen应助依琬采纳,获得10
9秒前
9秒前
77完成签到 ,获得积分10
9秒前
田様应助北楠采纳,获得10
9秒前
leolin发布了新的文献求助20
9秒前
啦啦啦啦完成签到,获得积分10
10秒前
俊秀的千万完成签到,获得积分10
10秒前
华仔应助杭笑寒采纳,获得10
11秒前
田様应助哭泣的雪巧采纳,获得30
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352