Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups

医学 冲程(发动机) 一致性 队列 弗雷明翰风险评分 人口学 队列研究 弗雷明翰心脏研究 社区动脉粥样硬化风险 疾病 老年学 内科学 机械工程 工程类 社会学
作者
Chuan Hong,Michael Pencina,Daniel Wojdyla,Jennifer L. Hall,Suzanne E. Judd,Michael P. Cary,Matthew M. Engelhard,Samuel I. Berchuck,Ying Xian,Ralph B. D’Agostino,George Howard,Brett Kissela,Ricardo Henao
出处
期刊:JAMA [American Medical Association]
卷期号:329 (4): 306-306 被引量:33
标识
DOI:10.1001/jama.2022.24683
摘要

Importance Stroke is the fifth-highest cause of death in the US and a leading cause of serious long-term disability with particularly high risk in Black individuals. Quality risk prediction algorithms, free of bias, are key for comprehensive prevention strategies. Objective To compare the performance of stroke-specific algorithms with pooled cohort equations developed for atherosclerotic cardiovascular disease for the prediction of new-onset stroke across different subgroups (race, sex, and age) and to determine the added value of novel machine learning techniques. Design, Setting, and Participants Retrospective cohort study on combined and harmonized data from Black and White participants of the Framingham Offspring, Atherosclerosis Risk in Communities (ARIC), Multi-Ethnic Study for Atherosclerosis (MESA), and Reasons for Geographical and Racial Differences in Stroke (REGARDS) studies (1983-2019) conducted in the US. The 62 482 participants included at baseline were at least 45 years of age and free of stroke or transient ischemic attack. Exposures Published stroke-specific algorithms from Framingham and REGARDS (based on self-reported risk factors) as well as pooled cohort equations for atherosclerotic cardiovascular disease plus 2 newly developed machine learning algorithms. Main Outcomes and Measures Models were designed to estimate the 10-year risk of new-onset stroke (ischemic or hemorrhagic). Discrimination concordance index (C index) and calibration ratios of expected vs observed event rates were assessed at 10 years. Analyses were conducted by race, sex, and age groups. Results The combined study sample included 62 482 participants (median age, 61 years, 54% women, and 29% Black individuals). Discrimination C indexes were not significantly different for the 2 stroke-specific models (Framingham stroke, 0.72; 95% CI, 0.72-073; REGARDS self-report, 0.73; 95% CI, 0.72-0.74) vs the pooled cohort equations (0.72; 95% CI, 0.71-0.73): differences 0.01 or less ( P values >.05) in the combined sample. Significant differences in discrimination were observed by race: the C indexes were 0.76 for all 3 models in White vs 0.69 in Black women (all P values <.001) and between 0.71 and 0.72 in White men and between 0.64 and 0.66 in Black men (all P values ≤.001). When stratified by age, model discrimination was better for younger (<60 years) vs older (≥60 years) adults for both Black and White individuals. The ratios of observed to expected 10-year stroke rates were closest to 1 for the REGARDS self-report model (1.05; 95% CI, 1.00-1.09) and indicated risk overestimation for Framingham stroke (0.86; 95% CI, 0.82-0.89) and pooled cohort equations (0.74; 95% CI, 0.71-0.77). Performance did not significantly improve when novel machine learning algorithms were applied. Conclusions and Relevance In this analysis of Black and White individuals without stroke or transient ischemic attack among 4 US cohorts, existing stroke–specific risk prediction models and novel machine learning techniques did not significantly improve discriminative accuracy for new-onset stroke compared with the pooled cohort equations, and the REGARDS self-report model had the best calibration. All algorithms exhibited worse discrimination in Black individuals than in White individuals, indicating the need to expand the pool of risk factors and improve modeling techniques to address observed racial disparities and improve model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
英俊的铭应助韭菜盒子采纳,获得10
1秒前
1秒前
小伙子发布了新的文献求助10
2秒前
Mia完成签到,获得积分10
3秒前
情怀应助DXM采纳,获得10
3秒前
嘟嘟嘟发布了新的文献求助10
3秒前
4秒前
小犁牛完成签到 ,获得积分10
4秒前
科目三应助英俊智宸采纳,获得10
4秒前
thynkz完成签到,获得积分10
5秒前
夏远航应助zp采纳,获得80
5秒前
5秒前
末末完成签到,获得积分10
7秒前
王某明发布了新的文献求助10
7秒前
凌香芦发布了新的文献求助10
8秒前
rockxie发布了新的文献求助20
8秒前
xiaoxiao晓完成签到,获得积分10
9秒前
郭桂桂发布了新的文献求助50
9秒前
9秒前
10秒前
月亮发布了新的文献求助10
10秒前
zhan完成签到,获得积分10
11秒前
yht.123完成签到 ,获得积分10
11秒前
不配.应助娇气的友易采纳,获得10
11秒前
11秒前
11秒前
LX-ik完成签到,获得积分20
12秒前
奕初阳发布了新的文献求助10
12秒前
DXM发布了新的文献求助10
14秒前
15秒前
风趣的芙完成签到,获得积分20
16秒前
16秒前
无私念瑶发布了新的文献求助10
16秒前
CH发布了新的文献求助10
16秒前
xyy发布了新的文献求助10
16秒前
彪壮的小玉应助HuaqingLiu采纳,获得20
18秒前
科研通AI2S应助月亮采纳,获得10
18秒前
NexusExplorer应助79采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145857
求助须知:如何正确求助?哪些是违规求助? 2797330
关于积分的说明 7823473
捐赠科研通 2453611
什么是DOI,文献DOI怎么找? 1305792
科研通“疑难数据库(出版商)”最低求助积分说明 627571
版权声明 601491